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1 Bernoulli Bond Percolation

Suppose G = (V,E) is a graph. Bernoulli bond percolation is a probability measure Pp on ω = (ω(e) :
e ∈ E) ∈ {0, 1}E for which each edge of E is open with probability p and closed with probability 1 − p,
independently for different edges. The parameter p ∈ [0, 1] is called edge-weight. The σ-algebra of
measurable events is the smallest σ-algebra containing events depending on finitely many edges.

1.1 Basic Properties

Consider the partial order on {0, 1}E given by

ω ≤ ω′ if and only if ω(e) ≤ ω′(e), for all e ∈ E.

This order induces a notion of increasing function from {0, 1}E to R. An event A is said to be increasing
if its indicator function 1A is increasing. Note that A is increasing if for any ω ∈ A and ω′ ≥ ω, we have
ω′ ∈ A.

Lemma 1.1 (Monotonicity). Let p ≤ p′. Then for any increasing event A, we have Pp[A] ≤ Pp′ [A].

Proof. We can couple percolation measures with different edge-weights on the same probability space as
follows. Consider Ω = [0, 1]E and let (Ue, e ∈ E) be a family of independent uniform random variables on
[0, 1]. Set P for the associated measure. For p ∈ [0, 1], introduce

ωp(e) := 1{Ue≤p} .

Then it is clear that ωp has the law of Pp. By the construction, we have ωp ≤ ωp′ for any p ≤ p′. Then
the claim follows trivially:

Pp[A] = P [ωp ∈ A] ≤ P [ωp′ ∈ A] = Pp′ [A].

Lemma 1.2 (FKG Inequality). Let p ∈ [0, 1], for any two increasing functions f and g which are bounded,
we have

Ep[fg] ≥ Ep[f ]Ep[g].

In particular, for any two increasing events A and B, we have

Pp[A ∩B] ≥ Pp[A]Pp[B].

Proof. Note that it is sufficient to prove the conclusion for increasing functions depending only on finitely
many edges, since the general increasing function can be approximated by such functions (see Exercise 1.1).
Suppose f and g are increasing functions depending on the status of the edges {e1, e2, . . . , eN}. We will
prove the conclusion by induction on N .

First, the conclusion is true for N = 1, since

Ep[fg] = pf(1)g(1) + (1− p)f(0)g(0) ≥ (pf(1) + (1− p)f(0))(pg(1) + (1− p)g(0)).

Next, assume the conclusion is true for N ≤ n. When N = n+ 1, we have

Ep[fg] = Ep [f(ω(e1), . . . , ω(en+1))g(ω(e1), . . . , ω(en+1))]

= Ep [Ep[f(ω(e1), . . . , ω(en+1))g(ω(e1), . . . , ω(en+1)) |ω(en+1)]]

≥ Ep [Ep[f(ω(e1), . . . , ω(en+1)) |ω(en+1)]Ep[g(ω(e1), . . . , ω(en+1)) |ω(en+1)]]
(by induction hypothesis)

≥ Ep [Ep[f(ω(e1), . . . , ω(en+1)) |ω(en+1)]] Ep [Ep[g(ω(e1), . . . , ω(en+1)) |ω(en+1)]]
(by the proof for N = 1)

= Ep [f(ω(e1), . . . , ω(en+1))] Ep [g(ω(e1), . . . , ω(en+1))] .

Thus the conclusion holds for N = n+ 1. This completes the proof.
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Next, we will introduce Russo’s formula. For a configuration ω, let ωe be the configuration coinciding
with ω for edges different from e, and with the edge e open; similarly, let ωe be the configuration coinciding
with ω for edges different from e, and with the edge e closed. Let A be an increasing event depending on
the states of a finite set of edges E. We say that e is pivotal for A if ωe ∈ A but ωe 6∈ A. Note that the
event {e is pivotal for A} does not depend on the status of e.

Lemma 1.3 (Russo’s formula). Let A be an increasing event depending on the states of a finite set of
edges E. Then

d

dp
Pp[A] =

∑
e∈E

Pp[e is pivotal for A].

Proof. We introduce the following probability measure on percolation configuration: suppose E = {e1, . . . , eN}.
For −→p = (p1, . . . , pN ) ∈ [0, 1]N , let P−→p be the probability measure such that the edge ej is open with
probability pj and closed with probability 1 − pj , independently for 1 ≤ j ≤ N . Then the weight for a
configuration ω ∈ {0, 1}E is given by

P−→p [ω] =
∏
j

(
pj 1{ω(ej)=1}+(1− pj) 1{ω(ej)=0}

)
.

Thus,

P−→p [A] =
∑
ω

1A(ω)P−→p [ω].

For 1 ≤ n ≤ N , differentiate with respect to pn, we have

∂

∂pn
P−→p [A] =

∑
ω

(
1

pn
1{ω(en)=1}−

1

1− pn
1{ω(en)=0}

)
1A(ω)P−→p [ω]

=
∑
ω

(
1

pn
1{ω(en)=1} 1A(ωen)− 1

1− pn
1{ω(en)=0} 1A(ωen)

)
P−→p [ω]

= P−→p [ωen ∈ A]− P−→p [ωen ∈ A] = P−→p [en is pivotal for A].

Therefore
d

dp
Pp[A] =

∑
n

(
∂

∂pn
P−→p [A]

)
pn=p,∀n

=
∑
n

Pp[en is pivotal for A].

1.2 Phase Transition

In the rest of this section, we focus on the bond percolation on the square lattice. The vertex-set V (Z2)
will be identified with Z2 and the edge-set E(Z2) is composed of pairs of nearest neighbors:

V (Z2) = {x = (x1, x2) : x1, x2 ∈ Z}, E(Z2) = {{x, y} : |x1 − y1|+ |x2 − y2| = 1}.

We denote the box of size n by Λn := [−n, n]2. Consider a finite subgraph G of Z2, the boundary of G is
given by

∂G := {x ∈ V (G) : there exists y 6∈ V (G) such that {x, y} ∈ E(Z2)}.
For the bond percolation on Z2, we are interested in the probability

θ(p) := Pp[0←→∞].

If θ(p) > 0, there is positive chance for the model to have infinite cluster, or to percolate. By Monotonic-
ity Lemma 1.1, it is clear that θ(p) is increasing in p. We will show the following phase transition of the
bond percolation.
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Theorem 1.4. For Bernoulli bond percolation on Z2, there exists pc ∈ (0, 1) such that

θ(p) = 0, if p < pc; θ(p) > 0 if p > pc.

In other words, there is a phase transition between a regime without infinite cluster and a regime with
an infinite cluster. The p < pc regime is called subcritical; the p > pc regime is called supercritical. When
p = pc, one speaks of the critical regime.

Define pc = sup{p : θ(p) = 0}, then we have θ(p) = 0 for p < pc and θ(p) > 0 for p > pc. It remains
to show pc ∈ (0, 1). We will prove pc > 0 and pc < 1 separately.

Proof of Theorem 1.4, pc > 0. To show pc > 0, it is sufficient to show that there exists p > 0 such that
θ(p) = 0. Note that θ(p) = Pp[0←→∞]. The event {0←→∞} implies that there exists an open path of
length n starting from the origin for all n ≥ 1. Let Ln be the collection of all paths of length n starting
from the origin. We have a trivial bound: #Ln ≤ 4n. Thus, for any n ≥ 1, we have

θ(p) ≤ Pp[∃L ∈ Ln such that all edges along L are open] ≤ pn#Ln ≤ (4p)n.

This is true for all n ≥ 1. Thus θ(p) = 0 when p < 1/4. This gives a lower bound on the critical value:
pc ≥ 1/4.

To show pc < 1, we need to introduce the duality of a bond percolation configuration. Suppose
G = (V,E) is a plane graph1, the dual graph of G is a graph that has a vertex for each face of G. The
dual graph has an edge whenever two faces of G are separated from each other by an edge. Thus, each
edge e ∈ E of G has a corresponding dual edge, denoted by e∗, whose endpoints are the dual vertices
corresponding to the faces on either side of e. The dual graph is denoted by G∗ = (V ∗, E∗). Note that
the dual graph of Z2 is Z2 + (1/2, 1/2).

Suppose G = (V,E) is a plane graph, for any configuration ω ∈ {0, 1}E , define the configuration
ω∗ ∈ {0, 1}E∗ by

ω∗(e∗) = 1− ω(e), ∀e ∈ E.
In words, a dual edge is open if the corresponding edge is closed, and vice versa. If the configuration ω
is sampled according Bernoulli bond percolation on G with edge-weight p, then the configuration ω∗ is
distributed according to a Bernoulli bond percolation on G∗ with edge-weight 1− p; see Figure 1.1.

Proof of Theorem 1.4, pc < 1. In order for the origin not to be connected to infinity, the dual configuration
ω∗ must contain an open circuit of dual-edges surrounding the origin. For m ≥ 2n, n ≥ 1, let Lm,n be the
set of dual circuits of length m surrounding the origin and passing by the point (n+ 1/2, 0). Then we see

Pp[0 6←→ ∞] = Pp [∃L ∈ ∪m,nLm,n which is open in ω∗]

≤
∑
n≥1

∑
m≥2n

(1− p)m#Lm,n ≤
∑
n≥1

∑
m≥2n

(4− 4p)m.

When p is close enough to 1, we have Pp[0 6←→ ∞] < 1. Thus we have pc ≤ p < 1.

Theorem 1.5. For Bernoulli bond percolation on Z2, either there is no infinite cluster almost surely, or
there exists a unique infinite cluster almost surely.

1A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that
its edges intersect only at their endpoints. Such a drawing is called a plane graph or planar embedding of the graph. The
definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than
planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding
of the graph.
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Figure 1.1: A bond configuration and its dual
configuration.

When θ(p) = 0, we have

Pp[∃ infinite cluster] ≤
∑
x∈Z2

Pp[x←→∞] = 0.

Thus there is no infinite cluster almost surely in this case.
When θ(p) > 0, there is positive chance to have infinite
cluster. To prove Theorem 1.5, it remains two steps: First,
we will show that Pp[∃ infinite cluster] = 1 when θ(p) > 0.
This part is a consequence of the ergodicity of the Bernoulli
percolation—Lemma 1.6. Next, we will show that there exists
a unique infinite cluster.

Let τx : {0, 1}E(Z2) → {0, 1}E(Z2) be the shift by a vector
x ∈ Z2 defined by

(τxω)({a, b}) = ω({a+ x, b+ x}), ∀{a, b} ∈ E(Z2).

For any event A, define τxA = {ω : τxω ∈ A}. An event
A is invariant under translation if τxA = A for any x ∈ Z2.
A measure µ is invariant under translation if µ[τxA] = µ[A] for any event A.

Lemma 1.6 (Ergodicity of Bernoulli Percolation). Bernoulli bond percolation on Z2 is ergodic, i.e. any
event A which is invariant under translation satisfies Pp[A] ∈ {0, 1}.

Proof. Let A be an event which is invariant under translations. For any ε > 0, choose n ≥ 1 and an event
B depending on the edges in Λn such that Pp[A∆B] ≤ ε. Pick x 6∈ Λ2n. Since A is translation invariant,
we have

Pp[A] = Pp[A ∩A] = Pp[A ∩ τxA].

Since Pp[A∆B] ≤ ε, we have
Pp[A ∩ τxA] = Pp[B ∩ τxB] +O(ε).

Since B depends only on the edges in Λn and x 6∈ Λ2n, we see that B and τxB are independent. Thus

Pp[B ∩ τxB] = Pp[B]Pp[τxB] = Pp[A]Pp[τxA] +O(ε) = Pp[A]2 +O(ε).

Combining these, we have
Pp[A] = Pp[A]2 +O(ε).

This holds for any ε > 0, thus Pp[A] = Pp[A]2 which gives the conclusion.

Theorem 1.5 was first proved by M. Aizenman, H. Kesten and M. Newman [AKN87]. The argument
presented here is due to R. M. Burton and M. Keane [BK89].

Proof of Theorem 1.5. Suppose θ(p) > 0. By Lemma 1.6, we have Pp[∃ infinite cluster] = 1 (the event
{∃ infinite cluster} is in the σ-algebra and it is translation invariant). It remains to show that the infinite
cluster is unique. For k ≥ 1, denote by Ak the event that there exist k disjoint infinite clusters; and
denote by A∞ the event that there exist infinitely many disjoint infinite clusters.

First, we show that Pp[Ak] = 0 for k ≥ 2. Suppose Pp[Ak] > 0, by Lemma 1.6 we have Pp[Ak] = 1.
On the event Ak, let En be the event that all infinite clusters intersect the box Λn. For n large enough,
we have Pp[En] > 0. Note that the event En does not depend on the edges inside the box Λn. Thus

Pp[A1] ≥ Pp[{all edges in Λn are open} ∩ En] > 0.

We have both Pp[Ak] = 1 and Pp[A1] > 0, contradiction. This implies Pp[Ak] = 0 for k ≥ 2.
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Next, we show that Pp[A∞] = 0. Suppose Pp[A∞] > 0 and hence Pp[A∞] = 1. Choose n large enough
such that

Pp[∃ three infinite clusters intersecting Λn] > 0.

Define T0 to be the event that ω \ {0} has at least three distinct infinite connected components which are
connected to {0}. By changing the configuration inside Λn, we have Pp[T0] > 0.

For x ∈ Z2, define Tx = τxT0 and we call x is a trifurcation if Tx occurs. Let T be the set of the
trifurcations in Λn. On the one hand, by translation invariance, we have

Ep[#T ] = Pp[T0]#Λn.

On the other hand, the number of trifurcations in Λn can not exceed the size of ∂Λn. Thus

Pp[T0]#Λn ≤ #∂Λn.

This is true for all n large enough and it contradicts with Pp[T0] > 0. This implies Pp[A∞] = 0.

1.3 Subcritical: exponential decay

Theorem 1.7. Consider Bernoulli bond percolation on Z2.

• If p < pc, then there exists c = c(p) > 0 such that for every n ≥ 1,

Pp[0←→ ∂Λn] ≤ e−cn.

• If p > pc, then

θ(p) = Pp[0←→∞] ≥ p− pc
p(1− pc)

. (1.1)

Theorem 1.7 was first proved by Aizenman and Barsky [AB87] and by Menshikov [Men86]. The proof
presented here is due to H. Duminil-Copin and V. Tassion [DCT16]. It is based on the following crucial
quantity.

Let S be a finite set of vertices containing the origin. Given such a set, we denote its edge-boundary
by

∆S = {{x, y} ∈ E(Z2) : x ∈ S, y 6∈ S}.
For p ∈ [0, 1] and 0 ∈ S ⊂ Z2, define

ϕp(S) := p
∑

{x,y}∈∆S

Pp
[
0

S←→ x
]
.

Set
p̃c = sup{p ∈ [0, 1] : ∃S with ϕp(S) < 1}.

We will prove that the two conclusions in Theorem 1.7 hold for p̃c. As a consequence, we have p̃c = pc
and complete the proof of Theorem 1.7.

Proof of Theorem 1.7, Exponential decay for p < p̃c. Suppose p < p̃c. By definition, there exists a finite
set S containing the origin such that ϕp(S) < 1. Let N ≥ 1 such that S ⊂ ΛN−1.

For j ≥ 2 and assume that the event {0 ←→ ∂ΛjN} holds. Define the random variable which is the
cluster of the origin in S

C :=
{
x ∈ S : x

S←→ 0
}
.

Since S ⊂ ΛN−1, one can find an edge {x, y} ∈ ∆S such that the following three events hold:

0
S←→ x, {x, y} is open, y

Cc←→ ∂ΛjN .
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Using a decomposition on all the possible realizations of C, we have

Pp[0←→ ∂ΛjN ] ≤
∑

{x,y}∈∆S

∑
C⊂S

Pp
[
{0 S←→ x} ∩ {C = C} ∩ {{x, y} is open} ∩ {y Cc←→ ∂ΛjN}

]
=

∑
{x,y}∈∆S

∑
C⊂S

pPp
[
{0 S←→ x} ∩ {C = C}

]
Pp
[
{y Cc←→ ∂ΛjN}

]
≤

∑
{x,y}∈∆S

∑
C⊂S

pPp
[
{0 S←→ x} ∩ {C = C}

]
Pp
[
{0←→ ∂Λ(j−1)N}

]
=

∑
{x,y}∈∆S

pPp
[
{0 S←→ x}

]
Pp
[
{0←→ ∂Λ(j−1)N}

]
= ϕp(S)Pp

[
{0←→ ∂Λ(j−1)N}

]
.

For the second equality, notice that the event {0 S←→ x} ∩ {C = C} depends on the states of the edges in

C while the event {y Cc←→ ∂ΛjN} depends on the states of the edges in Cc.
An induction on j gives

Pp[0←→ ∂ΛjN ] ≤ ϕp(S)j−1,

as desired.

For the second part of Theorem 1.7, we will need the following lemma.

Lemma 1.8. For p ∈ [0, 1] and n ≥ 1, we have

d

dp
Pp[0←→ ∂Λn] ≥ 1

p(1− p)

(
inf

S⊂Λn:0∈S
ϕp(S)

)
(1− Pp[0←→ ∂Λn]) .

Assuming Lemma 1.8 holds, and integrating the inequality between p̃c and p > p̃c, we have

Pp[0←→ ∂Λn] ≥ p− p̃c
p(1− p̃c)

.

Letting n→∞, we obtain the conclusion.

Proof of Lemma 1.8. Recall that an edge e = {x, y} is pivotal for the configuration ω and the event
{0←→ ∂Λn} if ωe ∈ {0←→ ∂Λn} but ωe 6∈ {0←→ ∂Λn}. By Russo’s formula, we have

d

dp
Pp[0←→ ∂Λn] =

∑
e∈Λn

Pp[e is pivotal for {0←→ ∂Λn}]

=
1

1− p
∑
e∈Λn

Pp[e is pivotal for {0←→ ∂Λn}, {0 6←→ ∂Λn}].

Define the random subset of Λn:

S := {x ∈ Λn such that x 6←→ ∂Λn}.

The boundary of S corresponds to the outmost blocking circuit. When 0 is not connected to ∂Λn, the set
S is always a subset of Λn containing the origin. By summing over all possible values for S, we have

d

dp
Pp[0←→ ∂Λn] =

1

1− p
∑

S⊂Λn,0∈S

∑
e∈Λn

Pp[e is pivotal for{0←→ ∂Λn},S = S].

On the event {S = S}, the fact that the edge e = {x, y} is pivotal means 0↔ x in S and e ∈ ∆S. Thus

d

dp
Pp[0←→ ∂Λn] =

1

1− p
∑

S⊂Λn:0∈S

∑
{x,y}∈∆S

Pp
[
0

S←→ x,S = S
]
.
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The event {S = S} is measurable with respect to edges with at least one endpoint outside S and it is

therefore independent of {0 S←→ x}. Thus

d

dp
Pp[0←→ ∂Λn] =

1

1− p
∑

S⊂Λn,0∈S

∑
{x,y}∈∆S

Pp
[
0

S←→ x
]

Pp [S = S]

≥ 1

p(1− p)
∑

S⊂Λn,0∈S
ϕp(S)Pp [S = S]

≥ 1

p(1− p) inf
S
ϕp(S)

∑
S⊂Λn,0∈S

Pp [S = S]

=
1

p(1− p) inf
S
ϕp(S)(1− Pp[0←→ Λn]).

1.4 Computation of the critical value on Z2

The value 1/2 is special, since this is the self-dual point of the percolation: ω∗ and ω have the same law
when p = 1/2. This gives a prediction of the critical value. Indeed, this prediction is true.

Theorem 1.9. For Bernoulli bond percolation on Z2, we have pc = 1/2 and θ(pc) = 0.

Lemma 1.10. For Bernoulli bond percolation on Z2, we have θ(1/2) = 0.

Proof. In this proof, we fix p = 1/2, and eliminate it from the notation. We prove by contradiction.
Assume θ(1/2) > 0, then P[∃ infinite cluster] = 1. For any ε > 0 small, we can choose n large enough
such that

P[Λn ←→∞] ≥ 1− ε4.
Let AL be the event that the left side of the box Λn is connected to infinity, and define AR,AT ,AB to
the corresponding event for the right side, the top, and the bottom of Λn. By FKG Lemma 1.2, we have

P[AcL]P[AcR]P[AcT ]P[AcB] ≤ P[AcL ∩ AcR ∩ AcT ∩ AcB] ≤ ε4.
By symmetry, we have P[AcL] ≤ ε. Define A∗L,A∗R,A∗T and A∗B for the dual configuration. Since the
probabilities of AcL,AcR, (A∗T )c, (A∗B)c are less than ε, we have

P[AL ∩ AR ∩ A∗T ∩ A∗B] ≥ 1− 4ε > 0.

By changing the edges inside Λn, the probability to have two disjoint infinite clusters become strictly
positive, contradiction.

Proof of Theorem 1.9. We fix p = 1/2 and eliminate it from the notation. For a rectangle R = [a, b]×[c, d]
and introduce the events

Ch(R) := {{a} × [c, d]
R↔ {b} × [c, d]}, Cv(R) = {[a, b]× {c} R↔ [a, b]× {d}}.

The events C∗h and C∗v are defined in terms of the dual configuration. We have the following observation:

P[Cv([0, n]2)] + P[C∗h([−1/2, n+ 1/2]× [1/2, n− 1/2])] = 1.

The rectangle [−1/2, n+ 1/2]× [1/2, n−1/2] is a translate of [0, n+ 1]× [0, n−1] which is harder to cross
horizontally than [0, n]2, the self-duality implies that

P[Cv([0, n]2)] ≥ 1/2.

Now we are ready to conclude. Lemma 1.10 implies pc ≥ 1/2. Assume pc > 1/2, then Theorem 1.7 gives
exponential decay at p = 1/2, which implies P[Cv([0, n]2)] ≤ ne−cn for some c > 0. Contradiction.
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1.5 Exercises

Exercise 1.1. In the proof of Lemma 1.2, we argue at the beginning that, to show the conclusion, it
suffices to show the conclusion for increasing functions depending only on finitely many edges. Justify
this argument.

Hint: Suppose e1, e2, . . . is a fixed ordering of the edges. First argue that fn := E[f |ω(e1), . . . , ω(en)]
is an increasing function, so as gn := E[g |ω(e1), . . . , ω(en)]. Next argue that fn → f and gn → g in L2

and hence E[fngn]→ E[fg].

Exercise 1.2. Consider Bernoulli bond percolation on the half-plane Z×N. Show that pc(Z×N) = 1/2.

Exercise 1.3. A tree is a connected graph without cycle, and a rooted binary tree is a tree with a root ∅
whose degree is two and all other vertices have degree three. Denote the rooted binary tree by T ∅2 . Denote
by Pp the Bernoulli bond percolation on T ∅2 with edge-weight p. Define θ(p) = Pp[∅ ←→∞]. Show that

θ(p) =

{
0, p ≤ 1/2;

(2p− 1)/p2, p > 1/2.

In particular, pc(T
∅
2 ) = 1/2.

Exercise 1.4. A three-regular tree T3 is a tree such that every vertex has degree three. We specify a
vertex as the root and denote it by ∅. Denote by Pp the Bernoulli bond percolation on T3 with edge-weight
p. Define θ(p) = Pp[∅ ←→∞].

• Show that

θ(p) =

{
0, p ≤ 1/2;

1− ((1− p)/p)3, p > 1/2.

In particular, pc(T3) = 1/2.

• When 1 > p > 1/2, there are infinitely many infinite-clusters almost surely.

Exercise 1.5. Denote by T the triangular lattice. Denote by Pp the Bernoulli bond percolation on T with
edge-weight p. Define θ(p) = Pp[0←→∞]. Show that

pc(T) = 2 sin(π/18).

A1

A2

A3

A1

A2

A3

Figure 1.2

Hint: see Figure 1.2. Conssider the bond percolation in
the two graphs in Figure 1.2. Define the three events:

U = {A1 ↔ A2, A2 ↔ A3},
V = {A1 ↔ A2, A1 6↔ A3},
W = {A1 6↔ A2, A2 6↔ A3, A3 6↔ A1}.

Calculate the probabilities of U, V,W for the bond percolation
on both graphs and see what is special for p that solves

3p− p3 = 1.

Note that p = 2 sin(π/18) solves the above equation.

Exercise 1.6. Theorems 1.4 to 1.7 hold for Bernoulli bond
percolation in Zd with d ≥ 2.
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Exercise 1.7. For Bernoulli bond percolation in Zd with d ≥ 2, show that

1

2d
≤ pc(d) ≤ 1

2
.

Conjecture 1.11. 2 Consider Bernoulli bond percolation on Zd with d ≥ 3, we have

Ppc [0←→∞] = 0.

SRT 1. Bernoulli percolation on higher dimension.

Please give a report on Bernoulli percolation on higher dimension discussing the following questions.

(1) Phase transition

(2) Critical point

(3) Exponential decay

(4) Continuity of the phase transition

References: [Gri99].

SRT 2. Bernoulli percolation on tree.

Please give a report on Bernoulli percolation on trees discussing the following questions.

(1) Phase transition for locally finite infinite tree.

(2) Number of infinite clusters.

(3) Value of the critical point.

Reference: [Gri99, LP16]

2The conjecture was proved to be true for d ≥ 19 by T. Hara and G. Slade (1990). Recently, the conjecture was proved
to be true for d ≥ 11 by R. Fitzner and R. van der Hofstad (2015).
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2 Bernoulli Site Percolation on Triangular Lattice

Figure 2.1

In this section, we focus on the regular triangular lattice T,
where faces are equilateral triangles. The sites of T are points
in Z + eiπ/3Z, and the neighboring sites are at distance one
from each other. The site percolation on T is a probability
measure Pp on ω = (ω(x) : x ∈ V (T)) ∈ {•, ◦}V (T) for which
each site of V (T) is black (open) with probability p and white
(closed) with probability 1 − p, independently for different
sites.

Note that coloring the sites of the triangular lattice in
black and white is equivalent to coloring the cells (or faces)
of the honeycomb lattice as in Figure 2.1. This representa-
tion is more convenient for our eyes to detect crossings and
interfaces.

We will use the coordinate defined via the vectors 1 and
eiπ/3. The point (n,m) will denote the point n + meiπ/3.
Hence, [0, n]× [0, n] will denote the rhombus with side-length
n. Define Hn to be the hexagon centered at the origin with
graph radius n.

Note that Monotonicity, FKG Inequality and Russo’s for-
mula also hold for the site percolation. Theorems 1.4 and 1.5
also hold for the site percolation.

We will show the following conclusions for the site percolation on T.

Theorem 2.1. Consider Bernoulli site percolation on T. There exists c > 0 such that for every n ≥ 1,

P1/2[0←→ ∂Hn] ≤ n−c.

In particular θ(1/2) = 0.

Theorem 2.2. For Bernoulli site percolation on T, we have pc = 1/2.

We will prove Theorem 2.1 in Section 2.1 using Russo-Seymour-Welsh. With Theorem 2.1 at hand,
we can use the same proof as in Section 1.4 to obtain Theorem 2.2.

2.1 Russo-Seymour-Welsh

Figure 2.2

We focus on p = 1/2 in this section, since we have symmetry
in this case. Since we fix p = 1/2 throughout this section, we
eliminate it from the notation. Suppose we have the site per-
colation in the rhombous as in Figure 2.2, then the probability
of a black left-to-right crossing is identical to the probability
of a white top-to-bottom crossing. Whereas, exactly one of
the two events “there exists a black left-to-right crossing” and
“a white top-to-bottom crossing” occurs (due to the fact that
the lattice is triangular). Therefore, the probabilities for the
two events are both 1/2. This is true regardless of the size
of the rhombus, and it therefore already gives information on
the large-scale properties of percolation.

Next, we estimate the crossing probability of the site per-
colation inside a hexagon.
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Lemma 2.3. Denote the six sides of the boundary of the hexagon Hn by l1, . . . , l6 in counterclockwise
order. Then we have

P[l1 ↔ l4] ≥ 1/9.

Proof. By symmetry, we see that
P[l1 ↔ l3 ∪ l4] = 1/2.

By FKG Inequality, we have

P[l1 ↔ l4] ≥ P[{l1 ↔ l3} ∩ {l2 ↔ l4}] ≥ P[l1 ↔ l3]2.

Combining these two relations, we obtain the conclusion.

Figure 2.3: The probability for {l1 ↔ l3∪ l4} is 1/2 by symmetry. The event {l1 ↔ l3}∩{l2 ↔ l4} implies {l1 ↔ l4}.

Lemma 2.4. Let H ′n be the hexagon Hn shifted vertically such that l′1 coincides with l4. Then we have

P[l1 ↔ l′4] ≥ 1/182.

Proof. We first argue that
P[l1 ↔ l′2 ∪ l′3 ∪ l′4] ≥ 1/18. (2.1)

Suppose there exists a crossing in Hn connecting l1 to l4. Starting from l5 ∪ l6, one can explore site by
site and find the leftmost such crossing, and denote it by L. For any deterministic vertical crossing L,
the event {L = L} is independent of the sites located to the right of L.

Assuming the existence of the path L, let L′ be the symmetric reflection of L with respect to l4. Then
L′ is a path in H ′n connecting l′1 to l′4. Define D to be the domain to the right of L ∪ L′ inside Hn ∪H ′n.
Inside the domain D, by symmetry, the probability of the event {L ↔ l′2 ∪ l′3 ∪ l′4} is 1/2; see Figure 2.4.
Therefore

P[l1 ↔ l′2 ∪ l′3 ∪ l′4] ≥
∑
L

P[L = L,L↔ l′2 ∪ l′3 ∪ l′4 in D]

=
∑
L

P[L = L]
1

2
=

1

2
P[l1 ↔ l4 in Hn].

This gives (2.1). With (2.1) at hand, we find

P[l1 ↔ l′4] ≥ P[{l1 ↔ l′2 ∪ l′3 ∪ l′4} ∩ {l′4 ↔ l1 ∪ l2∪3}] ≥ P[l1 ↔ l′2 ∪ l′3 ∪ l′4]P[l′4 ↔ l1 ∪ l2∪3] ≥ 1/182.
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Figure 2.4

Figure 2.5

Denote by Hj
n the union of j copies of Hn aligned one by

one vertically and denote by Cjn the event that there exists
a vertical crossing of Hj

n. By the argument in the proof of
Lemma 2.4, we have

P[C2j
n ] ≥ P[Cjn]2/4.

As a consequence, we have the following conclusion.

Proposition 2.5. For all j ≥ 1, there exists cj > 0 such that

P[Cjn] ≥ cj , ∀n.

Another consequence is for the existence of a black circuit
in annulus, see Figure 2.5. For m ≥ 1, denote by Am the
annulus H3m \H3m−1 . Then there exists c > 0 such that

P[∃a black circuit in Am surrounding the origin] ≥ c, ∀m.
(2.2)

Now we can give the proof of Theorem 2.1.

Proof of Theorem 2.1. If there is a black path connecting ∂H3 to ∂H3N , then there is no white circuit in
neither annulus Am for 2 ≤ m ≤ N . Thus

P[∂H3 ↔ ∂H3N ] ≤ pN ,

where p < 1 and it is a universal constant. This gives the conclusion.

2.2 Smirnov’s Proof of Cardy’s Formula

The graph

In this section, we denote by G the honeycomb lattice and by G∗ its dual, i.e. the triangular lattice.
Denote by Gδ and G∗δ the lattices scaled by δ > 0. The vertices of Gδ all have degree three. In the
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following, e will always stand for an oriented edge of Gδ, and −e will stand for the same edge with
opposite orientation. If e is an edge of Gδ, we will denote by e∗ its dual edge, oriented in the way that
the frame (e, e∗) is direct.

Each vertex x ∈ Gδ has three oriented edges having x as their origin. Set τ = e2πi/3. If e is one of
these edges, we will denote the other two by τe and τ2e. We have the following trivial identity: for each
oriented edge e of Gδ,

e∗ + τ(τe)∗ + τ2(τ2e)∗ = 0. (2.3)

The statement

We have the following setup.

• We call (Ω;A,B,C,D) a quad if Ω ⊂ C is a bounded simply connected domain with distinct
boundary points A,B,C,D in counterclockwise order, such that ∂Ω is locally connected. We will
not need the precise definition of local connectedness. Instead, we need the following property of it.
Let φ be any conformal map from U onto to Ω. Then the local connectedness of ∂Ω is equivalent
to that ∂Ω is a curve and is equivalent to that φ can be extended continuously to U. See [Pom92,
Theorem 2.1].

• For δ > 0 small, let (Ωδ;Aδ, Bδ, Cδ, Dδ) be an approximation of the quad (Ω;A,B,C,D) on Gδ
such that (Ωδ;Aδ, Bδ, Cδ, Dδ) converges to (Ω;A,B,C,D) in the Carathéodory sense: there exist
conformal maps φδ from U onto Ωδ and conformal map φ from U onto Ω such that φδ → φ locally
uniformly as δ → 0 and φ−1(Xδ)→ φ−1(X) as δ → 0 with X ∈ {A,B,C,D}.

Sample the critical site percolation in Ω∗δ and define Cδ(Ω;A,B,C,D) to be the event that there exists a
black crossing in Ω∗δ connecting the boundary arc (AδBδ) to the boundary arc (CδDδ).

Theorem 2.6. [Smi01] For the critical Bernoulli site percolation on T, we have the followings.

• The probability of Cδ is convergent:

P[Cδ(Ω;A,B,C,D)]→ f(Ω;A,B,C,D), as δ → 0.

• The function f is conformally invariant: for any conformal map φ on Ω, we have

f(φ(Ω);φ(A), φ(B), φ(C), φ(D)) = f(Ω;A,B,C,D).

• When Ω equals the equilateral triangle with three vertices A,B,C (note that the point D is located
on the segment CA), we have

f(Ω;A,B,C,D) =
|CD|
|CA| .

For z ∈ Ω, suppose zδ is an approximation of z on Gδ. Define EδA(z) to be the event that there
exists a black path in Ω∗δ separating the points Aδ, zδ from the points Bδ, Cδ. Set Hδ

A(z) = P[EδA(z)].
Define EδB(z), EδC(z) and Hδ

B(z), Hδ
C(z) similarly. Note that P[Cδ(Ω;A,B,C,D)] = Hδ

A(D). The proof of
Theorem 2.6 consists of three steps.

• First Step: Tightness. We first argue that the family {Hδ
A, H

δ
B, H

δ
C}δ>0 is tight under the topology

of uniform convergence.

• Second Step: Holomorphicity. Define

Hδ(z) = Hδ
A(z) + τHδ

B(z) + τ2Hδ
C(z), Sδ(z) = Hδ

A(z) +Hδ
B(z) +Hδ

C(z).

Since {Hδ
A, H

δ
B, H

δ
C}δ>0 is tight, the functions {Hδ, Sδ}δ>0 have subsequential limits. Suppose

(H,S) is a subsequential limit, we will argue that H and S are holomorphic.

14



• Third Step: Boundary Value. In the previous step, we see that the functions H and S are holo-
morphic and bounded, and hence they are uniquely determined by their boundary values. For the
function S, since it is holomorphic and real-valued, it has to be a constant. Since S(A) = 1, we find
S ≡ 1. For the function H, we easily find H(A) = 1, H(B) = τ,H(C) = τ2. Consider its value on
the arc (BC). For z ∈ (BC), we find HA(z) = 0 and HB(z) +HC(z) = 1. Along the arc [BC], the
function H is one-to-one and induces a continuous map from [BC] onto [τ, τ2]. Similar conclusion
holds for the arc [CA] and [AB]. Note that H is holomorphic in Ω and that H extends continuously
to Ω and induces a continuous bijection from ∂Ω to ∂B. By Principle of Corresponding Boundaries,
we conclude that H is the conformal map from Ω onto B which sends (A,B,C) to (1, τ, τ2).

Now we can conclude the proof of Theorem 2.6: for any subsequential limit (Hδ
A, H

δ
B, H

δ
C)→ (HA, HB, HC),

we have
HA +HB +HC = 1, HA + τHB + τ2HC = H,

where H is the conformal map from Ω onto B which sends (A,B,C) to (1, τ, τ2). Thus

HA(z) =
2<(H(z)) + 1

3
,

which completes the proof of Theorem 2.6.

Tightness

For two points z, w ∈ Ω, consider the events EδA(z) and EδA(w). Note that the difference |Hδ
A(z)−Hδ

A(w)|
is bounded by P[EδA(z)\EδA(w)]+P[EδA(w)\EδA(z)]. Suppose |z−w| ≤ 1/100 and dist((z+w)/2, ∂Ω) ≥ 1,
and denote by A the annulus with center (z + w)/2, inradius |z − w| and outradius 1. If there exists
a black circuit in the annulus A surrounding the center, then EδA(z) and EδZ(w) hold simultaneously or
fail simultaneously. Thus P[EδA(z) \ EδA(w)] and P[EδA(w) \ EδA(z)] are bounded by the probability that
there is no black circuit in the annulus A. By RSW, we obtain the following: there exists two positive
constants K and α > 0 such that

|Hδ
A(z)−Hδ

A(w)| ≤ K|z − w|α;

and a similar bound for Hδ
B and Hδ

C . Hence, if we suitably extend these functions continuously to Ω,
we obtain a family of uniformly Hölder maps from Ω to R. The family is then relatively compact with
respect to uniform convergence.

Holomorphicity

We first recall some standard facts in complex analysis. A function f : Ω → C is holomorphic if for any
z ∈ Ω, the complex derivative exists: f ′(z) = lim|ε|→0(f(z + ε) − f(z))/ε. By Morera’s theorem, f is
holomorphic if and only if for every simple closed smooth curve γ in Ω, we have

∮
γ f = 0. We will use

Morera’s theorem to show that the functions H and S are holomorphic. We only show the conclusion for
H and the holomorhpicity of S can be derived similarly.

Suppose γ is a simple closed smooth curve in Ω and let γδ be an approximation of γ in Ωδ, i.e. a finite
chain (γδ(k), 0 ≤ k ≤ Nδ) such that γδ(k + 1) and γδ(k) are nearest neighbours, the Hausdorff distance
between γδ and γ goes to zero as δ → 0, and that Nδ is of order 1/δ.

Suppose H is a subsequential limit of Hδ. Then we have

Iδ(γ) :=

Nδ∑
k=0

1

2
(Hδ(γδ(k)) +Hδ(γδ(k + 1)))(γδ(k + 1)− γδ(k))→

∮
γ
H(z)dz.
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To show the holomorphicity of H, it is sufficient to show Iδ(γ) → 0 as δ → 0. For any edge e pointing
from x to y, define

Hδ(e) =
1

2
(Hδ(x) +Hδ(y)), ∂eH

δ = Hδ(y)−Hδ(x).

Then we have
Iδ(γ) =

∑
e∈γδ

eHδ(e) =
∑
f∈ ◦γδ

∑
e∈∂f

eHδ(e),

where the first summation e ∈ γδ is summing over all edges along γδ in counterclockwise order, the

second summation f ∈ ◦
γδ is summing over all faces surrounded by γδ, and the third summation e ∈ ∂f

is summing over all edges along ∂f in counterclockwise order.

x0

x1x2

x3

x4 x5

c(f )

(a)

x

y

c(f )

c(f̃ )

(b)

Figure 2.6

For each face f , we have “integrate by parts”, see Figure 2.6(a):

∑
e∈∂f

eHδ(e) =

5∑
0

(xk+1 − xk)
Hδ(xk+1) +Hδ(xk)

2

=
5∑
0

(xk+1 − c(f))
Hδ(xk+1) +Hδ(xk)

2
−

5∑
0

(xk − c(f))
Hδ(xk+1) +Hδ(xk)

2

= −
5∑
0

(xk − c(f))
Hδ(xk+1)−Hδ(xk−1)

2

= −
5∑
0

(
xk + xk+1

2
− c(f)

)
(Hδ(xk+1)−Hδ(xk)).

Putting this back in the summation of Iδ(γ), for any edge e = (x, y) in the interior of the region
surrounded by γδ, it is shared by two faces f and f̃ , see Figure 2.6(b), we have(

x+ y

2
− c(f)

)
(Hδ(y)−Hδ(x)) +

(
x+ y

2
− c(f̃)

)
(Hδ(x)−Hδ(y))

= (c(f̃)− c(f))(Hδ(y)−Hδ(x))

= −e∗∂eHδ.

For any edge e = (x, y) along γδ, by the argument in “Tightness”, we find

|Hδ(y)−Hδ(x)| ≤ 3Kδα.
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Combining with the fact that Nδ is of order 1/δ, we have

Iδ(γ) =
1

2

∑
e⊂γδ

e∗∂eH
δ + o(1),

where the summation e ⊂ γδ is summing over all oriented edges e lying in the inside of γδ. We will show
that ∑

e⊂γδ

e∗∂eH
δ = 0. (2.4)

Note that (2.4) implies Iδ(γ)→ 0 and hence completes the proof.
We will eliminate δ from the notation in the following. For an edge e = (x, y) lying in the inside of

γδ, define PA(e) = P[EA(y) \ EA(x)], then

∂eHA = HA(y)−HA(x) = PA(e)− PA(−e).

Thus ∑
e⊂γδ

e∗∂eH
δ = 2

∑
e⊂γδ

e∗(PA(e) + τPB(e) + τ2PC(e)).

Combining with Lemma 2.7,

Lemma 2.7. [Color Switching] For any edge e lying in the inside of γδ,

PA(e) = PB(τe) = PC(τ2e).

We see that ∑
e⊂γδ

e∗∂eH
δ = 2

∑
e⊂γδ

e∗(PA(e) + τPB(e) + τ2PC(e))

= 2
∑
e⊂γδ

e∗(PA(e) + τPA(τ2e) + τ2PA(τe))

= 2
∑
e⊂γδ

(
e∗ + τ(τe)∗ + τ2(τ2e)∗

)
PA(e) = 0. (By (2.3))

This completes the proof of (2.4) and completes the proof. It remains to show Lemma 2.7. We prove it
by drawing figures, see Figure 2.7.

As a consequence of Theorem 2.6, we can derive the convergence of the interface in the critical site
percolation Theorem 2.8.

Theorem 2.8. Consider Bernoulli site percolation on triangular lattice. The interface converges weakly
to SLE(6). In particular, we have

Ppc [0←→ ∂Λn] = n−5/48+o(1), as n→∞.

θ(p) = (p− pc)5/36+o(1), as p ↓ pc.

Proof. [LSW02, SW01, Nol08].

These conclusions are believed to be true for the bond percolation, but they are still open.

Conjecture 2.9. Theorem 2.8 holds for the critical Bernoulli bond percolation on Z2.
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x

y

e
τe

τ 2e

A

B

C

(a)

x

y

e
τe

τ 2e

A

B

C

(b)

x

y

e
τe

τ 2e

A

B

C

(c)

Figure 2.7: Suppose e = (x, y), then PA(e) is the probability of EA(y) \ EA(x). The event EA(y) \ EA(x) means
there exists a black path separating A, y from B,C; while there exists a white path connecting x to the arc (BC),
as in (a). We explore the percolation site by site starting from C and suppose we find the rightmost white path
connecting x to (BC) and the leftmost black path connecting y to (CA). The sites in the remaining domain are
independent from what we explored so far. We switch the colors of the sites in the remaining domain, as in (b).
Then we switch the color of all sites, as in (c). These operations explain that PA(e) equals PB(τe).

2.3 Exercises

Exercise 2.1. Consider Bernoulli site percolation on Z2. Show that pc > 1/2.

SRT 3. Bernoulli site percolation vs. bond percolation

Please give a report on Bernoulli site percolation discussing the following questions.

(1) Relation between psc(G) and pbc(G).

(2) psc(Z
2).

References: [Gri99, BR06, GM13].

SRT 4. Bernoulli site percolation: the critical arm exponents and the scaling relations.

Please give a report on Bernoulli site percolation discussing the following topics.

(1) convergence of the interface to SLE(6)

(2) polychromatic arm exponents (boundary and interior)

(3) one-arm exponent

(4) monochromatic arm exponents

(5) near-critical percolation, characteristic length

References: [Smi01, SW01, Wer04, Nol08].
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3 Random Cluster Model

The random-cluster model, also called Fortuin-Kasteleyn percolation, is a dependent percolation model
on Zd which is intimately related to the Potts model.

Let G be a finite subgraph of Zd. Boundary conditions ξ are given by a partition P1 t · · · t Pk of
∂G := {x ∈ G : ∃y 6∈ G, {x, y} ∈ E(Zd)}. Two vertices are wired in ξ if they belong to the same Pj .
The graph obtained from the configuration ω by identifying the wired vertices together is denoted by ωξ.
Boundary conditions should be understood informally as encoding how sites are connected outside of G.
Let o(ω) and c(ω) denote the number of open and closed edges of ω and k(ωξ) the number of connected

components of the graph ωξ. The probability measure φξp,q,G of the random-cluster model on G with
edge-weight p ∈ [0, 1], cluster-weight q > 0 and boundary conditions ξ is defined by

φξp,q,G[ω] =
1

Zξp,q,G
po(ω)(1− p)c(ω)qk(ωξ),

for every configuration ω ∈ {0, 1}E(G). The constant Zξp,q,G is a normalizing constant, referred to as the
partition function. For q = 1, the random-cluster model is Bernoulli bond percolation.

We list a few boundary conditions that will come back later in the notes.

• Wired boundary conditions. They are specified by the fact that all the vertices on the boundary are
pairwise wired (the partition is equal to {∂G}). The random-cluster measure with wired boundary
conditions on G is denoted by φ1

p,q,G.

• Free boundary conditions. They are specified by no wiring between vertices on the boundary
(the partition is composed of singletons only). The random-cluster measure with free boundary
conditions on G is denoted by φ0

p,q,G.

• Dobrushin boundary conditions. Let (Ω; a, b) be a discrete simply connected domain Ω with two
vertices a and b on its boundary ∂Ω. We call such a triplet a Dobrushin domain. Since Ω is
simply connected, ∂Ω is separated into two boundary arcs denoted by (ab) (the arc from a to
b counterclockwise) and (ba) (the arc from b to a counterclockwise). The Dobrushin boundary
conditions are defined to be free on (ab) and wired on (ba). The corresponding measure will be

denoted by φa,bp,q,G.

• Boundary conditions induced by a configuration outside G. For a configuration ξ on E(Z2) \E(G),
the boundary conditions induced by ξ are defined by the partition P1 t · · · tPk. where x and y are
in the same Pj if and only if there exists an open path in ξ connecting x and y. We identify the
boundary conditions induced by ξ with the configuration itself, and we denote the random-cluster
measure with these boundary conditions by φξp,q,G.

The random-cluster model satisfies the domain Markov property. Suppose that G′ ⊂ G are two finite
subgraphs of Z2. Fix p ∈ [0, 1], q > 0 and ξ some boundary conditions on ∂G. Let X be a random variable
which is measurable with respect to edges in E(G′). Then we have

φξp,q,G
[
X |ωe = ψe, ∀e ∈ E(G) \ E(G′)

]
= φψ

ξ

p,q,G′ [X], ∀ψ ∈ {0, 1}E(G)\E(G′),

where ψξ is the partition on ∂G′ obtained as follows: two vertices x, y ∈ ∂G′ are wired if they are
connected in ψξ.

3.1 FKG Inequality

Theorem 3.1 (FKG Inequality). Fix p ∈ [0, 1], q ≥ 1, a finite graph G and some boundary conditions ξ.
For any two increasing events A and B, we have

φξp,q,G[A ∩B] ≥ φξp,q,G[A]φξp,q,G[B].
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In order to prove FKG inequality, we will use Holley criterion. Given two probability measures µ1, µ2,
we write µ1 ≤st µ2, and we say µ1 is stochastically smaller than µ2, if µ1[A] ≤ µ2[A] for all increasing
event A. We call a probability measure µ strictly positive if µ[ω] > 0 for all configurations ω.

Theorem 3.2 (Holley inequality). Let µ1, µ2 be strictly positive probability measures on the finite state
space such that

µ2[ωe]µ1[ηe] ≥ µ2[ωe]µ1[ηe], ∀e ∈ E,∀η ≤ ω, . (3.1)

Then µ1 ≤st µ2.

Proof. We will show that, under Condition (3.1), the two probability measures µ1 and µ2 can be coupled
on the space {(η, ω) : η ≤ ω}, then the conclusion follows immediately. This is achieved by constructing
a certain Markov chain with the coupled measure as invariant measure.

Here is a preliminary calculation. Let µ be a strictly positive probability measure. We may construct a
reversible Markov chain with invariant measure µ by choosing a suitable generator satisfying the detailed
balance equations. Let Q be given by

Q(ωe, ω
e) = 1, Q(ωe, ωe) =

µ[ωe]

µ[ωe]
, ∀e.

We set Q(ω, ω′) = 0 for all other pairs ω, ω′ with ω 6= ω′. The diagonal elements Q(ω, ω) are chosen in
such a way that ∑

ω′

Q(ω, ω′) = 0, ∀ω.

Then we find
µ(ω)Q(ω, ω′) = µ(ω′)Q(ω′, ω), ∀ω, ω′,

and therefore Q generates a Markov chain on the state space which is reversible with respect to µ. Since
the Markov chain is irreducible, its stationary measure is unique which is µ.

We follow a similar route for pairs of configurations. Let µ1 and µ2 satisfy the hypotheses of the
theorem, and let S = {(η, ω) : η ≤ ω}. Define H on S × S by

H(ηe, ω; ηe, ωe) = 1,

H(η, ωe; ηe, ωe) =
µ2[ωe]

µ2[ωe]
,

H(ηe, ωe; ηe, ω
e) =

µ1[ηe]

µ1[ηe]
− µ2[ωe]

µ2[ωe]
≥ 0, (by (3.1))

for all (η, ω) ∈ S and e ∈ E; all other off-diagonal values of H are set to be zero; and the diagonal terms
H(η, ω; η, ω) are chosen such that ∑

(η′,ω′)

H(η, ω; η′, ω′) = 0 ∀(η, ω) ∈ S.

Let (Xt, Yt) be a Markov chain on S with generator H, and set X0 = 0 (the state of all zeros) and
Y0 = 1 (the state of all ones). Since all transitions retain the ordering of the two components, we have
P[Xt ≤ Yt,∀t] = 1.

We first check that the stationary measure for Y is µ2. It is clear that the generator of (Yt) is given
by

QY (ωe;ω
e) = 1, QY (ωe;ωe) =

µ2[ωe]

µ2[ωe]
.

Thus the chain (Yt) is reversible with respect to µ2. Hence µ2 is the stationary measure.
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Next, we check that the stationary measure for X is µ1. Let us calculate the generator of Xt:

P[Xt+h = ηe |Xt = ηe] =
∑
ω

P[Xt+h = ηe | (Xt, Yt) = (ηe, ω)]P[(Xt, Yt) = (ηe, ω) |Xt = ηe]

=
∑
ω

(h+ o(h))P[(Xt, Yt) = (ηe, ω) |Xt = ηe] = h+ o(h).

P[Xt+h = ηe |Xt = ηe] =
∑

ω:ω(e)=1

P[(Xt+h, Yt+h) = (ηe, ωe) | (Xt, Yt) = (ηe, ωe)]P[Yt = ωe |Xt = ηe]

+
∑

ω:ω(e)=1

P[(Xt+h, Yt+h) = (ηe, ω
e) | (Xt, Yt) = (ηe, ωe)]P[Yt = ωe |Xt = ηe]

=
∑

ω:ω(e)=1

(
µ2[ωe]

µ2[ωe]
h+ o(h)

)
P[Yt = ωe |Xt = ηe]

+
∑

ω:ω(e)=1

((
µ1[ηe]

µ2[ηe]
− µ2[ωe]

µ2[ωe]

)
h+ o(h)

)
P[Yt = ωe |Xt = ηe]

=
µ1[ηe]

µ1[ηe]
h+ o(h).

Therefore, the generator of (Xt) is given by

QX(ηe; η
e) = 1, QX(ηe; ηe) =

µ1[ηe]

µ1[ηe]
.

Thus (Xt) is reversible with respect to µ1, and µ1 is the stationary measure.
Finally, let ν be an invariant measure for the Markov chain (Xt, Yt). Since X (resp. Y ) has the unique

stationary measure µ1 (resp. µ2), the marginals of ν are µ1 and µ2. Thus ν is the desired coupling of µ1

and µ2.

Proof of Theorem 3.1. Denote φξp,q,G by µ and set µ1 = µ and µ2[·] = µ[· |B]. By Holley inequality, to
show the conclusion, we only need to check that µ1 and µ2 satisfy Condition (3.1). To this end, it is
sufficient to check, for η ≤ ω,

1{ωe∈B} µ[ωe]µ[ηe] ≥ 1{ωe∈B} µ[ωe]µ[ηe]. (3.2)

Since B is increasing, the event {ωe ∈ B} implies {ωe ∈ B}. We may assume ωe ∈ B in the following.

Note that, up to the normalization constant Zξp,q,G, we have

µ[ωe]µ[ηe] = po(ω
e)+o(ηe)(1− p)c(ωe)+c(ηe)qkξ(ωe)+kξ(ηe),

µ[ωe]µ[ηe] = po(ωe)+o(η
e)(1− p)c(ωe)+c(ηe)qkξ(ωe)+kξ(ηe).

Since q ≥ 1, it is sufficient to show

kξ(ωe) + kξ(ηe) ≥ kξ(ωe) + kξ(ηe).

This is guaranteed by the fact that η ≤ ω.

Corollary 3.3 (Monotonicity). Fix p ≤ p′ and q ≥ 1, a finite graph G and some boundary conditions ξ.
For any increasing event A, we have

φξp,q,G[A] ≤ φξp′,q,G[A].

21



Proof. Note that

φξp′,q,G[A] =
φξp,q,G[Y 1A]

φξp,q,G[Y ]
, where Y (ω) :=

(
p′(1− p)
p(1− p′)

)o(ω)

.

Since p ≤ p′, the function Y is increasing. Thus by FKG, we have

φξp′,q,G[A] =
φξp,q,G[Y 1A]

φξp,q,G[Y ]
≥ φξp,q,G[A],

as desired.

Corollary 3.4 (Comparison between boundary conditions). Fix p ∈ [0, 1] and q ≥ 1, a finite graph G.
For any boundary conditions ξ ≤ ψ (meaning that two vertices wired in ξ are also wired in ψ), we have,
for any increasing event A,

φξp,q,G[A] ≤ φψp,q,G[A].

In particular, for any boundary conditions ξ, and for any increasing event A, we have

φ0
p,q,G[A] ≤ φξp,q,G[A] ≤ φ1

p,q,G[A].

Another consequence of FKG is the so-called finite-energy property: for any q ≥ 1, any finite graph
G, any boundary conditions ξ, and any ψ ∈ {0, 1}E(G), we have

p

p+ (1− p)q ≤ φ
ξ
p,q,G [ω(f) = 1 |ω(e) = ψ(e) ∀e ∈ E(G) \ {f}] ≤ p. (3.3)

3.2 Infinite-volume measure

The definition of an infinite volume random-cluster measure is not direct. Indeed, one cannot count the
number of open or closed edges in Z2 since they could be infinite. We will obtain infinite-volume measure
by taking a sequence of measures on larger and larger boxes Λn.

Let ξn be a sequence of boundary conditions. The sequence φξnp,q,Λn is said to converge to the infinite-
volume measure φp,q if

lim
n
φξnp,q,Λn [A] = φp,q[A],

for any event A depending only on the status of finitely many edges.

Proposition 3.5. Fix p ∈ [0, 1] and q ≥ 1. There exists two (possibly equal) infinite-volume random-
cluster measures φ0

p,q and φ1
p,q, called the infinite-volume random-cluster measures with free and wired

boundary conditions respectively, such that for any event A depending on a finite number of edges,

lim
n→∞

φ1
p,q,Λn [A] = φ1

p,q[A], lim
n→∞

φ0
p,q,Λn [A] = φ0

p,q[A].

Proof. We deal with the free boundary conditions, the wired boundary conditions can be treated similarly.
Fix an increasing event A depending on edges in ΛN only. Applying the domain Markov property and
the comparison between boundary conditions, we see,for any n ≥ N ,

φ0
p,q,Λn+1

[A] ≥ φ0
p,q,Λn [A].

The increasing sequence (φ0
p,q,Λn

[A])n≥N converges to a limit, denoted by P [A], as n→∞.
Since any event B depending on finitely many edges can be written by inclusion-exclusion as a combi-

nation of increasing events, taking the combination of the φ0
p,q,Λn

-probability defines a natural value P [B]
for which

φ0
p,q,Λn [B]→ P [B], as n→∞.

The fact that (φ0
p,q,Λn

)n≥0 are probability measures implies that the function P (which is defined on

the set of events depending on finitely many edges) can be extended into a probability measure on Z2.
We denote this measure by φ0

p,q.
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Lemma 3.6. Fix p ∈ [0, 1] and q ≥ 1. The infinite-volume measures φ0
p,q and φ1

p,q are translation
invariant and are ergodic.

Proof. We fix the parameters p, q and hence eliminate them from the notation. We first show that φ1 is
translation invariant and the proof for φ0 is similar. To this end, we only need to show that φ1[A] = φ1[τxA]
for any increasing event A depending only on finitely many edges and x ∈ Z2 which is a neighbor of the
origin. We have

φ1[A] = lim
n
φ1

Λn [A] = lim
n
φ1
τxΛn [τxA].

Note that Λn−1 ⊂ τxΛn ⊂ Λn+1. By the domain Markov property and the comparison between boundary
conditions, we have

φ1
Λn+1

[τxA] ≤ φ1
τxΛn [τxA] ≤ φ1

Λn−1
[τxA].

This implies that
lim
n
φ1
τxΛn [τxA] = φ1[τxA].

Thus φ1[A] = φ1[τxA].
Next, we show that φ1 is ergodic. We can repeat the same proof of Lemma 1.6 as long as we prove

the following fact: for any increasing events A and B depending on finitely many edges,

lim
|x|→∞

φ1[A ∩ τxB] = φ1[A]φ1[B]. (3.4)

Suppose the events A and B depend only on edges in ΛN . The FKG inequality implies that

φ1[A ∩ τxB] ≥ φ1[A]φ1[τxB] = φ1[A]φ1[B].

For the other direction, the comparison between boundary conditions implies that for |x| ≥ 2N ,

φ1[A ∩ τxB] ≤ φ1
Λ|x|/2

[A]φ1
τxΛ|x|/2

[τxB] = φ1
Λ|x|/2

[A]φ1
Λ|x|/2

[B].

The result follows by taking |x| → ∞.
Finally, the ergodicity of φ0 can be proved similarly by taking A,B decreasing.

Lemma 3.7. Fix p ∈ [0, 1] and q ≥ 1. For φ0
p,q or φ1

p,q, either there is no infinite cluster almost surely,
or there exists a unique infinite cluster almost surely.

Proof. The proof of Theorem 1.5 works and we only need to replace the independence between edges by
the finite energy inequality (3.3).

The measures φ0
p,q and φ1

p,q play specific roles in the theory. First, they are translation invariant and
ergodic. They are extremal infinite-volume measures, in the sense that any infinite-volume measure φ for
random-cluster model with p ∈ [0, 1] and q ≥ 1 satisfies

φ0
p,q[A] ≤ φp,q[A] ≤ φ1

p,q[A], ∀ increasing event A. (3.5)

Thus, if φ0
p,q = φ1

p,q, then there is a unique infinite-volume measure.

3.3 Phase Transition

Theorem 3.8. Fix q ≥ 1. There exists a critical point pc = pc(q) ∈ [0, 1] such that

• For p > pc, any infinite-volume measure has an infinite cluster almost surely.

• For p < pc, any infinite-volume measure has no infinite cluster almost surely.

Lemma 3.9. Fix p ∈ [0, 1] and q ≥ 1. We have φ0
p,q = φ1

p,q for all but countably many values of p.
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Proof. We first explain that the following equation implies φ0 = φ1:

φ0[ω(e) = 1] = φ1[ω(e) = 1]. (3.6)

Assume (3.6) holds. Since φ0
Λn

is stochastically dominated by φ1
Λn

, there exists a coupling Pn of the two
measures such that Pn[ω0 ≤ ω1] = 1 and the marginal of ω0 is φ0

Λn
and the marginal of ω1 is φ1

Λn
. Suppose

A is an increasing event depending only on edges inside ΛN . We have, for n ≥ N ,

0 ≤ φ1
Λn [A]− φ0

Λn [A] = Pn[ω1 ∈ A,ω0 6∈ A]

≤ Pn[∃e ∈ ΛN : ω1(e) = 1, ω0(e) = 0]

≤
∑
e∈ΛN

Pn[ω1(e) = 1, ω0(e) = 0]

=
∑
e∈ΛN

(
φ1

Λn [ω(e) = 1]− φ0
Λn [ω(e) = 0]

)
.

Let n → ∞, we have φ1[A] = φ0[A]. Thus, (3.6) implies φ0[A] = φ1[A] for any increasing event A
depending on finitely many edges. This gives φ0 = φ1.

To show the conclusion, we only need to argue that (3.6) holds for all but countably many values
of p. The proof needs the following conclusion the proof of which can be found in [FV18, Chapter 4
Theorem 4.6]: there exists a quantity, called the free energy, such that

f(p, q) = lim
n

1

#E(Λn)
logZξp,q,Λn , (3.7)

where the convergence holds uniformly in the choice of the boundary conditions ξ.
We will use this result to show the conclusion. Define the variable π(p) = log(p/(1− p)) and also set

pπ = eπ/(1 + eπ). Set

f̃ ξn(π, q) =
1

#E(Λn)
logZξpπ ,q,Λn − log(1 + eπ) =

1

#E(Λn)
log
∑
ω

eπo(ω)qk
ξ(ω),

f̃(π, q) = f(pπ, q)− log(1 + eπ).

Differentiate f̃ ξn(π, q) in π, we find

∂πf̃
ξ
n(π, q) =

1

#E(Λn)

∑
e∈Λn

φξpπ ,q,Λn [ω(e) = 1].

The right hand-side is increasing in p and hence increasing in π by FKG. This implies that f̃ ξn(π, q) is
convex in π. Passing to the limit, the function f̃(π, q) is also convex in π. This gives that f̃(π, q) is
differentiable in π for all but countably many points.

Let us prove that φ0
pπ ,q[ω(e) = 1] = φ1

pπ ,q[ω(e) = 1] at values of π for which f̃(π, q) is differentiable.
Recall a standard result for convex functions: If (gn) is a sequence of convex functions converging point-
wise to a function g which is differentiable at x, then limn ∂

+gn(x) = limn ∂
−gn(x) = g′(x). Applying

this result to the sequence f̃1
n(π, q) and f̃0

n(π, q) respectively, we deduce that

∂πf̃(π, q) = lim
n

1

#E(Λn)

∑
e∈Λn

φ1
pπ ,q,Λn [ω(e) = 1] = φ1

pπ ,q[ω(e) = 1];

∂πf̃(π, q) = lim
n

1

#E(Λn)

∑
e∈Λn

φ0
pπ ,q,Λn [ω(e) = 1] = φ0

pπ ,q[ω(e) = 1].

We obtain (3.6) at any point of differentiability in π of f̃(π, q).
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Proof of Theorem 3.8. Define

pc := inf{p ∈ [0, 1] : φ0
p,q[0←→∞] > 0}.

Since the event {0 ←→ ∞} is increasing, we deduce φ0
p,q[0 ←→ ∞] > 0 for p > pc. Ergodicity in

Lemma 3.6 implies that, for p > pc,

φ0
p,q[∃ infinite cluster] = 1.

Combing with (3.5), we obtain the conclusion for any infinite-volume measure with p > pc.
For p < pc, Lemma 3.9 implies that there exists p̃ ∈ (p, pc) such that there exists a unique infinite-

volume measure at p̃. Then for any infinite-volume measure φp,q,

φp,q[∃ infinite cluster] ≤ φ1
p,q[∃ infinite cluster] ≤ φ1

p̃,q[∃ infinite cluster] = φ0
p̃,q[∃ infinite cluster] = 0.

This gives the conclusion for p < pc.

3.4 Computation of the critical value on Z2

Theorem 3.10. Consider the random-cluster model on Z2 with cluster-weight q ≥ 1. The critical value
pc is given by

pc(q) =

√
q

1 +
√
q
.

Recall that we have introduced the dual graph and the dual configuration in Section 1.2. For a
configuration ω ∈ {0, 1}E(G), the dual configuration ω∗ ∈ {0, 1}E(G∗) is defined by

ω∗(e∗) = 1− ω(e), ∀e ∈ E(G).

Set p∗ = p∗(p, q) satisfying
pp∗

(1− p)(1− p∗) = q.

Proposition 3.11. Let ξ ∈ {0, 1}E(Z2)\E(G). The dual configuration of the random-cluster model on G
with parameters (p, q) and boundary conditions ξ is the random-cluster model with parameters (p∗, q) on
G∗ with boundary conditions ξ∗ where ξ∗(e∗) = 1− ξ(e) for e 6∈ E(G).

Proof. Suppose ω∗ is the dual configuration of ω, then the weight of ω∗ is given by

P[ω∗] = φξp,q,G[ω] ∝
(

p

1− p

)o(ω)

qk
ξ(ω).

It is clear that o(ω) = c(ω∗) = #E(G) − o(ω∗). To derive the relation between kξ(ω) and ω∗, we need
Euler’s formula. Let f(ωξ) be the number of faces in ωξ. Using Euler’s formula, we find

o(ω) + k(ωξ) + 1 = #V (G) + f(ωξ).

Note that, the connected components of (ω∗)ξ
∗

correspond exactly to faces of ωξ. Thus

k(ωξ) = Cξ + kξ
∗
(ω∗) + o(ω∗),

where Cξ is a constant not depending on ω. These imply that

P[ω∗] ∝
(

p

1− p

)o(ω)

qk
ξ(ω) ∝

(
p

1− p

)−o(ω∗)
qk

ξ∗ (ω∗)+o(ω∗) =

(
(1− p)q

p

)o(ω∗)
qk

ξ∗ (ω∗).

This gives the conclusion.
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Fix q ≥ 1 and introduce

psd(q) =

√
q

1 +
√
q
.

This is the unique value of p satisfying p∗(p, q) = p.

Lemma 3.12. Fix q ≥ 1, we have
φ0
psd(q),q[0↔∞] = 0.

Proof. If φ0
psd(q),q[0↔∞] > 0, we have infinite cluster under φ0

psd,q
. Then the dual model φ1

psd,q
also have

infinite cluster. We can repeat the same proof of Lemma 1.10 to argue that there are at least two infinite
clusters under φ0

psd,q
with positive chance where we only need to replace the edge independence by the

finite energy property (3.3). This contradicts Lemma 3.7.

Proof of Theorem 3.10. Lemma 3.12 implies that pc ≥ psd. Assume pc > psd. We can repeat the proof of
Theorem 1.9 as long as we have the exponential decay for subcritical case. Indeed, the exponential decay
holds, see Theorem 3.13.

Theorem 3.13. Consider the random-cluster model on Z2 with cluster-weight q ≥ 1.

• If p < pc, then there exists c = c(p) > 0 such that for every n ≥ 1, φ1
p,q,Λn

[0←→ ∂Λn] ≤ e−cn.

• If p > pc, then there exists C > 0 such that φ1
p,q[0←→∞] ≥ C(p− pc).

Proof. [DCRT19, Theorem 1.2].

3.5 Continuous/Discontinuous phase transition

To end this section, we discuss the continuity of the phase transition. It turns out that the continuity
depends on the cluster-weight q.

Theorem 3.14. Fix 1 ≤ q ≤ 4, we have φ1
pc,q[0←→∞] = 0.

Proof. [DCST17, Theorem 3].

Theorem 3.15. Fix q > 4, we have φ1
pc,q[0←→∞] > 0, and φ0

pc,q[0←→∞] = 0.

Proof. [DCGH+16, Theorem 1.2] and [?, Theorem 1].

For the random-cluster model in Z2, we say that we have continuous phase transition with 1 ≤ q ≤ 4
and discontinuous phase transition with q > 4. As a consequence of Theorem 3.14, we have the uniqueness
of infinite-volume measure.

Theorem 3.16. Fix 1 ≤ q ≤ 4, we have φ1
p,q = φ0

p,q and hence this is the unique infinite-volume measure.

Proof. Combining Lemma 3.17 and Corollary 3.18.

Lemma 3.17. Fix q ≥ 1. If φ1
p,q[0↔∞] = 0, we have φ1

p,q = φ0
p,q.

Proof. We fix p, qin the proof and hence eliminate them from the notations. To show φ1 = φ0, it is
sufficient to show (3.6) for an edge e that is adjacent to the origin. For n ≤ m, consider the event
{0 6↔ ∂Λn} under the measure φ1

Λm
. Denote by C the cluster inside Λn connecting to ∂Λn. Then the

event {0 6↔ ∂Λn} is the same as {0 6∈ C}. For any realization A of C such that 0 6∈ A, define U to be the

26



connected component of Λn containing the origin obtained by removing from Λn all the edges in A and
all the edges adjacent to A. Then we have

φ1
Λm [ω(e) = 1, 0 6↔ ∂Λn] =

∑
A:06∈A

φ1
Λm [ω(e) = 1, C = A]

=
∑
A:06∈A

φ1
Λm [C = A]φ1

Λm [ω(e) = 1 | C = A]

=
∑
A:06∈A

φ1
Λm [C = A]φ0

U [ω(e) = 1]

≤
∑
A:06∈A

φ1
Λm [C = A]φ0[ω(e) = 1] = φ1

Λm [0 6↔ ∂Λn]φ0[ω(e) = 1].

As m→∞, we have
φ1[ω(e) = 1, 0 6↔ ∂Λn] ≤ φ0[ω(e) = 1].

As n→∞, since φ1[0 6↔ ∞] = 1, we have

φ1[ω(e) = 1] ≤ φ0[ω(e) = 1],

which implies (3.6) and completes the proof.

Corollary 3.18. Fix q ≥ 1. The unique edge-weight p ∈ [0, 1] for which there can exist distinct infinite-
volume measures is psd(q).

Proof. We fix q ≥ 1 and hence eliminate it from the notation. Lemma 3.12 gives φ0
psd

[0 ↔ ∞] = 0. For
any p < psd, by Lemma 3.9, there exists p̃ ∈ (p, psd) such that φ1

p̃ = φ0
p̃. Then

φ1
p[0↔∞] ≤ φ1

p̃[0↔∞] = φ0
p̃[0↔∞] ≤ φ0

psd
[0↔∞] = 0.

Combining with Lemma 3.17, we have the uniqueness of the infinite-volume measure at (p, q).
For p > psd, we have p∗ < psd. The dual measures of φ0

p,q and φ1
p,q are φ1

p∗,q and φ0
p∗,q respectively.

Since p∗ < psd, we see φ1
p∗,q = φ0

p∗,q and hence φ0
p,q = φ1

p,q.

3.6 Exercises

Exercise 3.1. Proposition 3.5 and Lemmas 3.6 and 3.7 hold for the random-cluster model in Zd with
d ≥ 2.

Exercise 3.2 (Differential formula). Let A be an increasing event depending on edges in G only. Let
IA(e) be the influence of the edge e defined by

IA(e) := φξp,q,G[A |ω(e) = 1]− φξp,q,G[A |ω(e) = 0].

• Show that
IA(e) ≥ φξp,q,G[e is pivotal for A].

• Show that
d

dp
φξp,q,G[A] =

∑
e

IA(e).

SRT 5. Random-cluster model.

Please give a report on Theorem 3.13, Theorem 3.14, Theorem 3.15.
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4 Conformal Invariance for FK-Ising Model

In this section, we focus on FK-Ising model, i.e. random cluster model with q = 2.

(a) The square lattice. (b) The dual lattice. (c) The medial lattice.

Figure 4.1: The lattices.

The dual square lattice (Z2)∗ is the dual graph of Z2. The vertex set is (1/2, 1/2) + Z2 and the edges
are given by nearest neighbors. The vertices and edges of (Z2)∗ are called dual-vertices and dual-edges. In
particular, for each edge e of Z2, it is associated to a dual edge, denoted by e∗. The dual edge e∗ crosses
e in the middle. The medial lattice (Z2)� is the graph with the centers of edges of Z2 as vertex set, and
edges connecting nearest vertices. This lattice is a rotated and rescaled version of Z2, see Fig 4.1. The
vertices and edges of (Z2)� are called medial-vertices and medial-edges. We identify the faces of (Z2)�

with the vertices of Z2 and (Z2)∗. A face of (Z2)� is said to be black if it corresponds to a vertex of Z2

and white if it corresponds to a vertex of (Z2)∗. We denote the square lattice by L, and denote the dual
lattice and the medial lattice by L∗ and L� respectively.

For δ > 0, the square lattice
√

2δL of mesh-size
√

2δ will be denoted by Lδ. The dual and medial
lattices extend to this context and they are denoted by L∗δ and L�δ . Note that the medial lattice L�δ has
mesh-size δ. For a simply connected domain Ω, we set Ωδ = Ω∩ Lδ. The edges connecting sites of Ωδ are
those included in Ω.

Let (Ω; a, b) be a Dobrushin domain. Let Ω�δ be the medial graph of Ωδ composed of all the vertices of
L�δ bordering a black face associated to Ωδ.

3 Let aδ, bδ be two vertices of ∂Ω�δ close to a and b and require
that bδ is the southeast corner of a black face.

4.1 Fermionic observable

Fix a Dobrushin domain (Ω; a, b) and consider a configuration ω together with its dual-configuration ω∗.
The Dobrushin boundary condition is given by taking edges of (ba) to be open and the dual-edges of
(a∗b∗) to be dual-open; in this case, we also say that the boundary condition along (ba) is wired and the
boundary condition along (ab) is free. Through every vertex of Ω�, there passes either an open edge of
Ω or a dual open edge of Ω∗. Draw self-avoiding loops on Ω� as follows: a loop arriving at a vertex of
the medial lattice always makes a ±π/2 turn so as not to cross the open or dual open edges through this
vertex. The loop representation contains loops together with a self-avoiding path going from a� to b�, see
Fig. 4.2. This curve is called the exploration path in Ω� from a� to b�.

Lemma 4.1. Consider FK-Ising model in (Ωδ; aδ, bδ) with Dobrushin boundary conditions. We have

φ(Ωδ;aδ,bδ)(ω) =
1

Z
xo(ω)

√
2
`(ω)

, where x =
p√

2(1− p)
,

3This definition is non-standard since we include medial vertices not associated to edges of Ωδ.
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and `(ω) is the number of loops in the loop configuration associated to ω.

Proof. Note that
`(ω) = k(ω) + k(ω∗)− 1 = 2k(ω) + o(ω) + const.

Figure 4.2

Definition 4.2. The edge FK fermionic observable is defined on edges of Ω�δ by

Fδ(e) = E

[
1{e∈γ} exp

(
i

2
Wγ(e, bδ)

)]
,

where Wγ(e, bδ) denotes the winding between the center of e and b�δ. The vertex FK fermionic observable
is defined on vertices of Ω�δ \ ∂Ω�δ by

Fδ(v) =
1

2

∑
e∼v

Fδ(e),

where the sum is over the four medial edges having v as an endpoint.

The goal of this section is the following.

Theorem 4.3. Fix a Dobrushin domain (Ω; a, b) and let (Ωδ; aδ, bδ) be a sequence of discrete Dobur-
shin domains converging to (Ω; a, b) in the Carathéodory sense. Consider the critical FK-Ising model on
(Ωδ; aδ, bδ) with Dobrushin boundary conditions. Let Fδ be the vertex fermionic observable in (Ω�δ ; a

�
δ , b
�
δ).

Then, we have
1√
2δ
Fδ →

√
φ′, as δ → 0, locally uniformly,

where φ is any conformal map from Ω on to the strip R× (0, 1) sending a to −∞ and b to +∞.
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4.2 Discrete complex analysis on graphs

In this section, we shall discuss how to discretize harmonic and holomorphic functions, and what are the
properties of these discretizations. Since we need to consider scaling limits, we want to deal with discrete
structure which converge to the continuous complex analysis as finer and finer graphs are taken.

Preharmonic functions

We first introduce the discretization of the Laplacian operator in the case of the square lattice Lδ. For
x ∈ Lδ and h : Lδ → R, define

∆δh(x) =
1

4

∑
y: y∼x

(h(y)− h(x)).

A function h : Ωδ → R is preharmonic (resp. pre-superharmonic, pre-subharmonic) if ∆δh(x) = 0 (resp.
∆δh(x) ≤ 0, ∆δh(x) ≥ 0) for every x ∈ Ωδ.

The classical relation between preharmonic function and simple random walk is the following: Let
(Xn)n≥1 be a simple random walk on Lδ killed at the first time it exits Ωδ, then h is preharmonic if
and only if (h(Xn))n≥1 is a martingale. Consequently, we have solution to the Dirichlet boundary value
problem in the discrete.

Lemma 4.4. Let Ω be simply connected. Given fδ : ∂Ωδ → R, there exists a unique preharmonic function
on Ωδ such that hδ = fδ on ∂Ωδ.

Proof. We first show the existence. Let (Xn)n≥1 be a simple random walk starting from x ∈ Ωδ and let
τ be the first time that it hits ∂Ωδ. Define

hδ(x) = E[fδ(Xτ )].

Then hδ is harmonic on Ωδ and hδ = fδ on ∂Ωδ.
Next, we show that preharmonic functions attain the maximum on the boundary. Let h be a pre-

harmonic function on Ωδ. Suppose it attains its maximum at x0 ∈ Ωδ, we will show that h is con-
stant. As

∑
x∼x0 h(x) = 4h(x0), we see that h(x) = h(x0) for all x ∼ x0. For any y ∈ Ωδ, there

exists a path x0 ∼ x1 ∼ · · · ∼ xn = y such that xi ∈ Ωδ. Repeating the previous argument, we find
h(y) = h(xn) = · · · = h(x0). Therefore, h is constant.

Finally, let us show the uniqueness. Suppose there are two functions h1 and h2 such that they are
preharmonic on Ωδ and h1 = h2 = fδ on ∂Ωδ. Then h1 − h2 is preharmonic on Ωδ, and thus it attains its
maximum and its minimum on ∂Ωδ. As h1 − h2 = 0 on ∂Ωδ, we see that h1 − h2 = 0 on Ωδ.

We have the convergence of the discrete Dirichlet problem solution to the continuous one.

Theorem 4.5. Let (Ω; a, b) be a Dobrushin domain, f be a bounded continuous function on ∂Ω \ {a, b},
and h be the unique harmonic function on Ω, continuous on Ω \ {a, b}, satisfying h = f on ∂Ω \ {a, b}.
Let (Ωδ; aδ, bδ) be a sequence of discrete Dobrushin domains converging to (Ω; a, b) in the Carathéodory
sense. Let fδ : ∂Ωδ → R be a sequence of uniformly bounded functions converging to f uniformly away
from a and b. Let hδ be the unique preharmonic function on Ωδ such that hδ = fδ on ∂Ωδ. Then hδ → h
locally uniformly as δ → 0.

Proof. See e.g. [DC13, Theorem 8.9].

Preholomorphic functions

Isaacs’s definition of preholomorphic function involves the following discretization of the operator ∂̄ =
∂x + i∂y. For a function f : Lδ → C, and x ∈ L∗δ , define

∂̄δf(x) =
1

2
(f(E)− f(W )) +

i

2
(f(N)− f(S)),
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where N,E, S,W are the four vertices of Lδ adjacent to the dual vertex x indexed in the obvious way. A
function f : Ωδ → C is preholomorphic if ∂̄δf(x) = 0 for all x ∈ Ω∗δ . The equation ∂̄δf(x) = 0 is called
the Cauchy-Riemann equation at x.

Preholomorphic functions satisfy the following properties.

Lemma 4.6. (1) Sums of preholomorphic functions are preholomorphic.

(2) Discrete contour integrals vanish in simply connected domain.

(3) The primitive in simply connected domain is well-defined.

(4) If a family (fδ) of preholomorphic functions on Ωδ converges locally uniformly to f on Ω, then f is
holomorphic.

Proof of Item (2). It suffices to show that the integral around a face vanishes. Suppose the face has center
x ∈ L∗δ and denote the four vertices by N,E, S,W indexed in the obvious way. The integral of f around
the face is the following:

1

2
(f(S) + f(E))δ(1 + i) +

1

2
(f(E) + f(N))δ(−1 + i)

+
1

2
(f(N) + f(W ))δ(−1− i) +

1

2
(f(S) + f(W ))δ(1− i)

=δ2i∂̄δf(x) = 0.

Proof of Item (4). Morera’s theorem.

s-holomorphic functions

As explained in the previous section, the theory of preholomorphic functions starts like the continuum
theory. Unfortunately, problems arrive quickly. For instance, the product of two preholomorphic functions
is no longer preholomorphic in general. In order to partially overcome this difficulty, we introduce s-
holomorphic functions (for spin-holomorphic), a notion that will be central in the study of the spin
fermionic observables.

Figure 4.3: Lines `(e) for medial edges around a white face.

To each edge e on the medial lattice, associate a direction `(e), see Figure 4.3 for the definition. In
other words, `(e) has the same direction as

√
ē when one view the oriented edge e as a complex number.

A function f is s-holomorphic if for any edge e of Ω�δ , we have

P`(e)[f(x)] = P`(e)[f(y)],
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where x, y are the endpoints of e and P` is the orthogonal projection on the direction `. The definition of
s-holomorphic is not rotationally invariant: f is s-holomorphic if and only if eiπ/4f(i·) is s-holomorphic.

Proposition 4.7. Any s-holomorphic function f : Ω�δ → C is preholomorphic on Ω�δ.

Proof. Let f : Ω�δ → C be a s-holomorphic function and let v be a vertex of Lδ ∪L∗δ (this is the vertex set
of the dual graph of the medial lattice). Assume that v ∈ Ω∗δ , the other case is similar. We aim to show

∂̄δf(v) =
1

2
(f(SE)− f(NW )) +

i

2
(f(NE)− f(SW )) = 0.

The relation provided by the s-holomorphicity around the face centered at v is the following:

f(NW ) + f(NW ) = f(NE) + f(NE);

f(NE) + if(NE) = f(SE) + if(SE);

f(SE)− f(SE) = f(SW )− f(SW );

f(SW )− if(SW ) = f(NW )− if(NW ).

Multiplying the second identity by −i, the third one by −1, the fourth one by i, and then summing the
four identities, we obtain

0 = 2(1− i)∂̄δf(v).

This gives the conclusion.

The interest in s-holomorphic functions comes from the fact that a relevant discretization of =
∫
f2

can be defined for s-holomorphic function f .

Theorem 4.8. Let Ω be a simply connected domain. Suppose f : Ω�δ → C is an s-holomorphic function
and b0 ∈ Ωδ. Then, there exists a unique function H : Ωδ ∪ Ω∗δ → C such that

H(b0) = 1, and H(b)−H(w) = δ|P`(e)[f(x)]|2(= δ|P`(e)[f(y)]|2),

for every edge e = (x, y) on Ω�δ bordered by a black face b ∈ Ωδ and a white face w ∈ Ω∗δ. For two
neighboring sites b1, b2 ∈ Ωδ, with v being the medial vertex at the center of (b1, b2), we have

H(b1)−H(b2) =
1

2
=(f(v)2(b1 − b2)). (4.1)

The same relation holds for sites of Ω∗δ. This legitimizes the fact that H is a discrete analogue of 1
2=
∫
f2.

b2

b1

w

v

S

N

W E
1

e−iπ/4

eiπ/4

i

Figure 4.4
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Proof of Theorem 4.8. One can construct the value of the function at a vertex by summing increments
along an arbitrary path from b0 to this vertex. The only thing to check is that the value obtained in this
way does not depend on the chosen path. Since Ω�δ is simply connected, it is sufficient to check it for
elementary square contours around each medial vertex v. Therefore, we only need to check

|P`(S)[f(v)]|2 − |P`(E)[f(v)]|2 = |P`(W )[f(v)]|2 − |P`(N)[f(v)]|2, (4.2)

where N,E, S,W are the four medial edges around v indexed in the obvious way, see Figure 4.4. Note
that `(N), `(S) are orthogonal, and `(E), `(W ) are orthogonal. Thus

|P`(N)[f(v)]|2 + |P`(S)[f(v)]|2 = |f(v)|2 = |P`(E)[f(v)]|2 + |P`(W )[f(v)]|2.

This gives (4.2).
It remains to show (4.1). We may assume b1− b2 = δ(1 + i) and let w = b2 + δ. Denote by S the edge

between b2 and w and by E the edge between b1 and w. From definition, we have

H(b1)−H(w) =δ|P`(E)[f(v)]|2 = δ(<f(v))2,

H(b2)−H(w) =δ|P`(S)[f(v)]|2 =
δ

2
(<f(v)−=f(v))2.

Taking the difference, we have

H(b1)−H(b2) =
δ

2
((<f(v))2 + 2(<f(v))(=f(v))− (=f(v))2) =

1

2
=(f(v)2(b1 − b2)).

B

B1

1

e−iπ/4eiπ/4

i

B2

B3 B4

Figure 4.5

Proposition 4.9. Denote by H• the restriction of H to Ωδ (black faces) and by H◦ the restriction of H
to Ω∗δ (white faces). If f is s-holomorphic, then H• is subharmonic and H◦ is superharmonic.

Proof. We only prove forH•. SupposeB is a vertex of Ωδ\∂Ωδ. We aim to show that the sum of increments
of H• between B and its four neighbors is positive, see Figure 4.5. We denote by B1, B2, B3, B4 the four
neighbors in counterclockwise order such that B1 = B+ δ(1 + i). Denote by vk the center between B and
Bk and denote ak = <f(vk) and bk = =f(vk) for k = 1, 2, 3, 4. From (4.1), we have

H(Bk)−H(B) =
1

2
=(f(vk)

2(Bk −B)), k = 1, 2, 3, 4. (4.3)
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As f is s-holomorphic, we have

a := a3 = a4, b := b1 = b2, c :=
a2 + b2√

2
=
a3 + b3√

2
, d :=

a4 − b4√
2

=
a1 − b1√

2
.

Thus,

a1 = b+ d
√

2, a2 = c
√

2− b, a3 = a4 = a, b1 = b2 = b, b3 = c
√

2− a, b4 = a− d
√

2.

Plugging into (4.3), we have

2

δ

4∑
k=1

(H(Bk)−H(B)) =a2
1 + 2a1b1 − b21 + a2

2 − 2a2b2 − b22 − a2
3 − 2a3b3 + b23 − a2

4 + 2a4b4 + b24

=4(a2 + b2 + c2 + d2) + 4
√

2(bd− bc− ac− ad) ≥ 0.

4.3 Proof of Theorem 4.3

In this section, we fix p =
√

2
1+
√

2
. Then, x = 1 in Lemma 4.1.

Lemma 4.10. Consider a medial vertex v ∈ Ω�δ \ ∂Ω�δ. We have

Fδ(N)− Fδ(S) = i (Fδ(E)− Fδ(W )) ,

where N,E, S,W are the four adjacent edges indexed in the obvious way.

Figure 4.6

Proof. We may assume v as in Figure 4.6. Let e be a medial edge and set

eω = φ(Ωδ;aδ,bδ)[ω] 1{e∈γ} exp

(
i

2
Wγ(e, bδ)

)

34



the contribution of the configuration ω to Fδ(e). Denote by s the involution on the space of configurations
which switches the state of the primal edge corresponding to v. Then we have

Fδ(e) =
∑
ω

eω =
1

2

∑
ω

(eω + es(ω)).

It suffices to show that, for all ω,

Nω +Ns(ω) − Sω − Ss(ω) = i
(
Eω + Es(ω) −Wω −Ws(ω)

)
. (4.4)

There are three cases.

• Case 1. The exploration path γ(ω) does not go through any of the edges adjacent to v. Then neither
does s(ω). Thus the terms in (4.4) all vanish and (4.4) holds.

• Case 2. The exploration path γ(ω) goes through two edges around v. We may assume that it enters
v through W and leaves through S, and the other cases can be analyzed similarly. In such case, the
primal edge corresponding to v is open. We compute the contribution of all the edges W,E,N, S of
ω and s(ω) in terms of Wω. See Figure 4.6. Then we may check that (4.4) holds.

• Case 3. The exploration path γ(ω) goes through the four medial edges around v. The computation
is the same as in the second case.

Lemma 4.11. The vertex fermionic observable Fδ is s-holomorphic.

Proof. We may assume that the medial edge corresponding to bδ is horizontal pointing to the right. In
such case, it is clear that Fδ(e) belongs to `(e). Consider a medial vertex v and the four edges N,E, S,W
adjacent to it. As Fδ(e) belongs to `(e), we may write

Fδ(N) = (1− i)aN , Fδ(E) = iaE , Fδ(S) = (1 + i)aS , Fδ(W ) = aW , with aN , aE , aS , aW ∈ R.

From Lemma 4.10, we have aE = aS − aN and aW = aN + aS . In particular,

Fδ(v) = Fδ(N) + Fδ(S) = Fδ(E) + Fδ(W ).

Note that Fδ(N) and Fδ(S) are orthogonal. Thus Fδ(N) is the projection of Fδ(v) to `(N). This holds
in general: Fδ(e) is the projection of Fδ(v) to `(e) when v is an endpoint of e.

Let A be the black face bordering aδ. Since 1√
2δ
Fδ is s-holomorphic, Theorem 4.8 defines a function

Hδ : Ωδ ∪ Ω∗δ → R such that

H(A) = 1, and Hδ(B)−Hδ(W ) = |P`(e)[Fδ(x)]|2 = |P`(e)[Fδ(y)]|2,

for the medial edge e = (x, y) bordered by a black face B ∈ Ωδ and a white face W ∈ Ω∗δ . Recall that its
restriction H•δ to Ωδ is subharmonic and its restriction H◦δ to Ω∗δ is superharmonic.

Lemma 4.12. • The subharmonic function H•δ is equal to 1 on (ba), and it converges to 0 on (ab)
uniformly away from a and b.

• The superharmonic function H◦δ is equal to 0 on (a∗b∗), and it converges to 1 on (b∗a∗) uniformly
away from a and b.
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Figure 4.7

Proof. We first show that H•δ is constant along (ba). The notations are explained in Figure 4.7. Then we
have

H•δ (B)−H•δ (B′) = |Fδ(e)|2 − |Fδ(e′)|2 = 0.

Thus, H•δ is constant along (ba). Since H•δ (A) = 1, it is one along (ba). Similarly, H◦δ is 0 along (a∗b∗).
Next, we consider H•δ along (ab). We have

H•δ (B) = H◦δ (W ) + |Fδ(e)|2 = |Fδ(e)|2 = φ(Ωδ;aδ,bδ)[e ∈ γ]2.

Suppose B is at distance r from (ba), and let Uδ = (B + [−r, r]2) ∩ Lδ. Then we have

H•δ (B) = φ(Ωδ;aδ,bδ)[e ∈ γ]2 ≤ φ1
Uδ

[B ↔ ∂Uδ]
2 → 0, as δ → 0.

Similarly, we have the convergence of H◦δ along (b∗a∗).

Proposition 4.13. The sequence (Hδ)δ>0 converges to =φ locally uniformly.

Proof. Let h•δ (resp. h◦δ) be the preharmonic function with the same boundary data as H•δ (resp. H◦δ ).
Since H•δ is subharmonic, we have H•δ ≤ h•δ . Since H◦δ is superharmonic, we have H◦δ ≥ h◦δ . Suppose
K ⊂ Ω is compact. Let bδ ∈ Kδ and wδ ∈ K∗δ be neighbors. We have

h◦δ(wδ) ≤ H◦δ (wδ) ≤ H•δ (bδ) ≤ h•δ(bδ).

Applying Theorem 4.5 to h◦δ and to h•δ , we obtain the conclusion.

Proof of Theorem 4.3. We assume the tightness of ( 1√
2δ
Fδ)δ>0 is known. Suppose ( 1√

2δn
Fδn) is a conver-

gent subsequence and denote the limit by f . Since Fδn is preholomorphic, the limit f is holomorphic.
For x, y ∈ Ω, we have

Hδn(y)−Hδn(x) =
1

2δn
=
∫ y

x
Fδn(z)2dz.

Since Fδn → f locally uniformly, the RHS converges to =
∫ y
x f(z)2dz. From Proposition 4.13, the LHS

converges to =(φ(y)− φ(x)). Both
∫ y
x f(z)2dz and φ(y)− φ(x) are holomorphic functions in y. Thus

φ(y)− φ(x) = const+

∫ y

x
f(z)2dz.

Therefore, f =
√
φ′.
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4.4 Exercises

Exercise 4.1. Show that the restriction of a continuous holomorphic function to Lδ satisfies the discrete
Cauchy-Riemann equations up to O(δ3).

Exercise 4.2. Show that
1√
2δ
∂̄δ,

1

2δ2
∆δ

converge (as δ → 0) to ∂̄,∆ in the sense of distributions.

SRT 6. Convergence of interfaces in FK-Ising model.

Please give a report on FK-Ising model discussing the following topics.

(1) convergence of the interface to SLE(16/3) in Dobrushin domain.

(2) convergence of the interface in polygon with alternating boundary conditions.

References: [CS12, CDCH+14, Izy20].
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5 Ising Model

The (spin) Ising model can be defined on any graph, and we will focus on the square lattice. Let G be a
finite subgraph of Zd and fix some boundary conditions b ∈ {	,⊕}∂G. The probability measure µbβ,G of
the Ising model on G with inverse-temperature β > 0 and boundary conditions b is defined by

µbβ,G[σ] =
1

Zbβ,G
exp

(
β
∑
x∼y

σxσy

)
,

for every configuration σ ∈ {	,⊕}G such that σ = b on ∂G. The constant Zbβ,G is a normalizing constant,
referred to as the partition function. We list a few boundary conditions that will come back later in the
notes.

• ⊕-boundary conditions. This is the case when bx = ⊕ for all x ∈ ∂G. The corresponding Ising
model on G is denoted by µ⊕β,G. Similarly, the Ising model with 	-boundary conditions is denoted

by µ	β,G.

• free-boundary conditions. One can define the Ising model without boundary conditions, also called
free boundary conditions. The corresponding Ising model on G is denoted by µfβ,G.

• Dobrushin-boundary conditions. Let (Ω; a, b) be a Dobrushin domain. Define ∂eΩ = {x ∈ Z2\V (Ω) :
∃y ∈ V (Ω) such that (x, y) ∈ E(Z2)}. Assume that ∂eΩ can be divided into two ?-connected paths
(ab) and (ba).4 The Dobrushin-boundary conditions are defined to be ⊕ on (ab) and 	 on (ba).

The Ising model satisfies the domain Markov property. Suppose that G′ ⊂ G are two finite subgraphs
of Zd. Fix β > 0 and some boundary conditions b ∈ {	,⊕}∂G. Let X be a random variable which is
measurable with respect to vertices in G′. Then we have

µbβ,G[X |σx = ψx, x ∈ G \G′] = µψβ,G′ [X],

for all ψ ∈ {	,⊕}G\G′ such that ψ = b on ∂G.

5.1 Infinite volume measures and phase transition

We have a natural partial order on the spin configurations {	,⊕}G given by

σ ≤ σ′, if and only if σx ≤ σ′x, for all x ∈ G.

An event A is increasing if for any σ ∈ A and σ′ ≥ σ, we have σ′ ∈ A.

Theorem 5.1 (FKG Inequality). Fix β > 0, a finite graph G and some boundary conditions b. For any
two increasing events A and B, we have

µbβ,G[A ∩B] ≥ µbβ,G[A]µbβ,G[B].

Proof. Similar as the proof of Theorem 3.1.

Corollary 5.2 (Comparison between boundary conditions). Fix β > 0, a finite graph G. For boundary
conditions b1 ≤ b2 and any increasing event A, we have

µb1β,G[A] ≤ µb2β,G[A].

We can then obtain the infinite-volume measures in the similar way as in Section 3.2.

4two vertices x and y are ?-neighbors if ‖x− y‖∞ = 1 and each vertex has eight neighbors in this metric.
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Proposition 5.3. Fix β > 0. There exist two (possibly equal) infinite-volume measures µ⊕β and µ	β , called
the infinite-volume Ising model with ⊕ and 	 boundary conditions respectively, such that for any event A
depending on a finite number of sites,

lim
n→∞

µ⊕β,Λn [A] = µ⊕β [A], lim
n→∞

µ	β,Λn [A] = µ	β [A].

Proposition 5.4. The measures µ⊕β and µ	β are translation invariant and are ergodic. For µ⊕β or µ	β ,
there is no infinite cluster almost surely, or there exists a unique infinite cluster almost surely.

Proof. The translation invariance and ergodicity can be proved in a similar way as in Section 3.2. We
only need to explain the uniqueness of the infinite cluster. Exercise 5.2.

The Ising model in infinite volume exhibits a phase transition.

Theorem 5.5. Define

βc =
1

2
log(1 +

√
2).

We have µ⊕β [σ0] = 0 when β < βc, and µ⊕β [σ0] > 0 when β > βc.

We will derive Theorem 5.5 using the phase transition of the random-cluster model. To this end, we
introduce the Edwards-Sokal coupling. Let G be a finite graph and ω be a configuration in {0, 1}E(G).
We construct a spin configuration σ ∈ {	,⊕}G by assigning independently to each cluster of ω a ⊕ or 	
spin with probability 1/2 (note that all the vertices of a cluster receive the same spin).

Proposition 5.6. Fix p ∈ (0, 1) and a finite graph G. If the configuration ω is sampled according to the
random-cluster measure with parameters (p, 2) and free boundary conditions, then the spin configuration
σ is distributed according to an Ising measure with free boundary conditions and inverse-temperature

β =
1

2
log

1

1− p. (5.1)

Proof. Denote by P the probability measure on (ω, σ) where ω is a random-cluster configuration with
free boundary conditions and σ is the corresponding spin configuration as explained above. By the
construction, we have

P [(ω, σ)] =
1

Z0
p,2,G

po(ω)(1− p)c(ω)2k(ω) × 2−k(ω) =
1

Z0
p,2,G

po(ω)(1− p)c(ω).

Now we construct another probability measure Q on (ω, σ) as follows. Let σ be a spin configuration
sampled according to the Ising model with free boundary conditions and the inverse-temperature β.
We then define ω from σ by closing all edges between neighboring vertices with different spins and by
independently opening edges between neighboring vertices with the same spin with probability p. Denote
by r(σ) the number of edges between neighboring vertices with different spins. By the construction, we
have

Q[(ω, σ)] ∝ e−2βr(σ)po(ω)(1− p)c(ω)−r(σ).

By the choice of β, we see 1− p = e−2β. Thus

Q[(ω, σ)] ∝ po(ω)(1− p)c(ω).

This implies that Q = P and hence gives the conclusion.

In Proposition 5.6, if ω is sampled according to the random-cluster measure with parameters (p, 2)
and wired boundary conditions, the Edwards-Sokal coupling provides us with a Ising configuration with
⊕-boundary conditions (or 	-boundary conditions).
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Corollary 5.7. For p ∈ (0, 1), a finite graph G and β defined through (5.1), we have

µfβ,G[σxσy] = φ0
p,2,G[x↔ y], µ⊕β,G[σx] = φ1

p,2,G[x↔ ∂G].

Proof of Theorem 5.5. Combining Corollary 5.7 and Theorem 3.10. Moreover, we also have the exponen-
tial decay for the subcritical phase.

Theorem 5.8. • For β ≤ βc, we have µ⊕β [σ0] = 0. Consequently, µ⊕β = µ	β and this is the unique
infinite-volume measure.

• For β > βc, we have µ⊕β [σ0] > 0. The set of infinite-volume measures is given by

{λµ⊕β + (1− λ)µ	β : λ ∈ [0, 1]}.

Proof. From Corollary 5.7 and conclusions from random-cluster models in Section 3, we have

µ⊕β,Λn [σ0] = φ1
p,2,Λn [0↔ ∂Λn]→

{
0, p ≤ pc;
φ1
p,2[0↔∞] > 0, p > pc.

Therefore, we have µ⊕β [σ0] = 0 for β ≤ βc and µ⊕β [σ0] > 0 for β > βc.

When β ≤ βc, it remains to show that µ⊕β = µ	β . To this end, we need to show that µ⊕β [A] = µ	β [A] for
any increasing event A depending only on finitely many vertices. Suppose A is measurable with respect
to the status of vertices inside ΛN and suppose N ≤ n. We construct a probability measure on the triple
(ω, σ⊕, σ	) in the following way. We first sample ω according to φ1

p,2,Λn
. Denote by Cn the cluster in ω

connected to ∂Λn. For v ∈ Cn, we set σ⊕v = ⊕ and σ	v = 	; for v ∈ Λn \ Cn, we set σ⊕v = σ	v which is
either ⊕ or 	 with equal probability 1/2. Then we find that σ⊕ ∼ µ⊕β,Λn and σ	 ∼ µ	β,Λn . We have

0 ≤ µ⊕β,Λn [A]− µ	β,Λn [A] = P[σ⊕ ∈ A, σ	 6∈ A] ≤ φ1
p,2,Λn [∂ΛN ↔ ∂Λn]→ 0, as n→∞.

Therefore, µ⊕β [A] = µ	β [A] as desired.

When β > βc, we have µ⊕β [σ0] = φ1
p,2[0↔∞] > 0 and µ	β [σ0] = −φ1

p,2[0↔∞] < 0. For the rest of the
conclusion, see [Aiz80, Hig81].

5.2 High and low temperature expansions

Graph terminologies

For a graph G = (V,E), define EG to be the collection of even subgraph of G, i.e. the set of subgraphs ω
of G such that every vertex in V is the end-point of an even number of edges of ω. Generally, for A ⊂ V ,
let EG(A) be the set of subgraphs ω of G such that

• every vertex of V \A is the end-point of an even number of edges of ω,

• every vertex of A is the end-point of an odd number of edges of ω.

Note that if #A is odd, then EG(A) is empty. The set EG(∅) is the same as EG.

High temperature expansion

The high temperature expansion of the Ising model is based on the following identity:

eβσxσy = cosh(β) + σxσy sinh(β) = cosh(β)(1 + tanh(β)σxσy). (5.2)
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Proposition 5.9. Let G be a finite graph and β > 0. We have

Zfβ,G = 2#V (G) cosh(β)#E(G)
∑
ω∈EG

tanh(β)o(ω). (5.3)

Proof. By (5.2), we have

Zfβ,G =
∑
σ

∏
(x,y)∈E

eβσxσy = cosh(β)#E
∑
σ

∏
(x,y)∈E

(1 + tanh(β)σxσy)

= cosh(β)#E
∑
σ

∑
ω⊂E

tanh(β)o(ω)
∏

(x,y)∈ω

σxσy.

Note that, for fixed ω ⊂ E, ∑
σ

∏
(x,y)∈ω

σxσy =

{
2#V , if ω ∈ EG,
0, otherwise.

This gives (5.3).

Low temperature expansion
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Figure 5.1: Low temperature expansion for Dobrushin
boundary conditions.

The low temperature expansion of the Ising model
is a graph representation on the dual lattice. For
each spin configuration σ ∈ {⊕,	}V (G), define
the contour configuration ω[σ] ∈ {0, 1}E(G∗) on
the dual lattice by the following, for each edge
e = (x, y) ∈ E(G),

ω[σ](e∗) =

{
1, if σx 6= σy,

0, otherwise.

The construction is one-to-one for any bound-
ary conditions b, and it is two-to-one for free
boundary conditions due to the symmetry. Once
we know the boundary conditions b, one may re-
construct the spin configuration σ from the con-
tour configuration ω[σ]. If σ is sampled according
to the Ising measure, then the probability of the
corresponding contour configuration ω is proportional to e−2βo(ω).

Example 5.10. Consider the Ising model on G with ⊕-boundary conditions, then the corresponding
contour configuration ω is an even subgraph of G∗. We find

Z⊕β,G = eβ#E(G∗)
∑
ω∈EG∗

e−2βo(ω).

Example 5.11. Consider the Ising model on (Ω; a, b) (which is a subgraph of Z2) with Dobrushin boundary
conditions, then the corresponding contour configuration is composed of loops togehter with one interface
running between the two edges of (Z2)∗ at a and b, see Figure 5.1. In this case, we have

Zdobrβ,G = eβ#E(G∗)
∑

ω∈EG∗∪{a,b}({a,b})

e−2βo(ω).
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Krammers-Wannier duality

Proposition 5.12. Let β > 0 and define β∗ ∈ (0,∞) such that

tanh(β∗) = e−2β. (5.4)

Then for every graph G, we have

2#V (G∗) cosh(β∗)#E(G∗)Z⊕β,G = eβ#E(G∗)Zfβ∗,G∗ .
Physicists expect the free energy to exhibit only one singularity, localized at βc. If β∗c 6= βc, there

would be two singularities. Thus βc = β∗c . Note that βc in Theorem 5.5 is the unique solution to (5.4) for
β∗ = β.

5.3 Fermionic observable

Figure 5.2

Let zδ ∈ Ω�δ , let E(aδ, zδ) be the set of collections of contours drawn on Ωδ composed of loops and one
interface from aδ to zδ. For such a configuration ω ∈ E(aδ, zδ), denote by γ(ω) the interface from aδ to zδ
(turning left when there is ambiguity). See Figure 5.2. Note that, if we consider the critical Ising model
on Ω∗δ with Dobrushin boundary conditions, see Figure 5.3, then ω ∈ E(aδ, bδ) is the low temperature
expansion and γδ is the interface in ω connecting aδ to bδ.

Definition 5.13. On a Dobrushin domain (Ω�δ ; aδ, bδ), the spin-Ising fermionic observable at zδ ∈ Ω�δ is
defined by

Fδ(zδ) =

∑
ω∈E(aδ,zδ)

e−
i
2
Wγ(ω)(aδ,zδ)(

√
2− 1)o(ω)∑

ω∈E(aδ,bδ)
e−

i
2
Wγ(ω)(aδ,bδ)(

√
2− 1)o(ω)

,

where the winding Wγ(aδ, zδ) is the total rotation in radians of the curve γ between aδ and zδ.

Theorem 5.14. Let (Ω; a, b) be a Dobrushin domain and assuming that ∂Ω is smooth in a neighbor of b.
Then

Fδ(·)→
√
ϕ′(·)
ϕ′(b)

, as δ → 0, locally uniformly,

where ϕ is any conformal map from Ω onto H sending a to ∞ and b to 0.
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Figure 5.3

The proof has three steps:

• First, prove the s-holomorphicity of Fδ.

• Second, prove the convergence of the associated function Hδ.

• Third, prove the convergence of Fδ.

Proposition 5.15. For δ > 0, the fermionic observable Fδ is s-holomorphic on Ω�δ.

Proof. Let x, y be two adjacent medial vertices connected by the edge e = (x, y). Without loss of
generality, assume e is pointing southeast, thus `(e) = R. Let v be the vertex of Ωδ bordering the medial
edge e. For ω ∈ E(aδ, xδ), define

xω =
1

Z (
√

2− 1)o(ω) exp

(
− i

2
(Wγ(ω)(aδ, xδ)−Wγ0(aδ, bδ))

)
,

where γ0 is some fixed arbitrary path from aδ to bδ and Z is a normalizing real number not depending
on the configuration. For ω ∈ E(aδ, yδ), define yω similarly. We will show that∑

ω∈E(aδ,xδ)

<(xω) =
∑

ω′∈E(aδ,yδ)

<(yω′). (5.5)

We will partition the set of configurations into pairs of configurations (ω, ω′), where ω contributes to
Fδ(xδ) and ω′ contributes to Fδ(yδ), such that <(xω) = <(yω′).

Consider the interface in ω that connecting aδ to xδ or yδ, there are four cases. Case 1. The interface
reaches x or y and can be extended by one step to reach the other one. Case 2. The interface reaches v
before x or y, and can be extended by one step to x or y. Case 3. The interface reaches x or y and sees a
loop preventing it from being extended to the other one. Case 4. The interface reaches x or y, then goes
away from v and comes back to the other one. Note that, in cases 1(a), 1(b), 2, there can be a loop or
even the past of the interface passing through v, but this does not change the computation.

We obtain the following table for xω and yω′ , see Figure 5.5. Moreover, we can also compute the
argument modulo π of xω. Upon projecting on R, the result follows.
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Figure 5.4

Figure 5.5

Proof of Theorem 5.14 (sketch). Since Fδ is s-holomorphic, one can define the observable Hδ as in Theo-
rem 4.8 with the requirement that it is equal to zero on the white face adjacent to b. Then one can show
that away from a, the functions (Hδ)δ>0 remains bounded (the proof is sophisticated where one uses the
boundary modification trick). The boundedness implies precompactness of (Fδ)δ>0 away from a.

Consider a convergent subsequence (Fδn , Hδn) converging to (F,H). One can check that H is equal to
zero on ∂Ω \ {a} and it is harmonic inside Ω (not easy). Thus H = λ=ϕ for some constant λ > 0. Thus
2λ=ϕ = =

∫
F 2 which gives F 2 = 2λϕ′. Since F (b) = 1, we have F =

√
ϕ′/ϕ′(b).

5.4 Exercises

Exercise 5.1. Denote by ZfIsing(β,G) the partition function for the Ising model with free boundary con-

ditions and by Z0
RCM(p, 2, G) the partition function for the random-cluster model with free boundary

conditions. Assume β and p are related through (5.1). Show that

ZfIsing(β,G) = eβ#E(G)Z0
RCM(p, 2, G).

Exercise 5.2. Prove Proposition 5.4. Hint: Consider Ising model on Z2, we see that any ⊕-cluster is
surrounded by a ?-connected 	-circuit.

Exercise 5.3. Use the high and low temperature expansions to show that βc ∈ (0,∞).
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SRT 7. Convergence of interfaces in Ising model.

Please give a report on Ising model discussing the following topics.

(1) convergence of the interface to SLE(3) in Dobrushin domain.

(2) convergence of the interface with general boundary conditions.

References: [CS12, CDCH+14, Izy15, Izy17].
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